Class Time: 4:40–5:55pm, Tu. Th.
Class website on SAKAI

Instructor: Xiaobai Sun
Email: xiaobai[at]cs.duke.edu
(Subject Line starts with NA-2024)

Teaching Assistants:
Abdumalik Abdukayumov
abdumalik.abdukayumov[at]duke.edu
Joe Arch, joe.arch[at]duke.edu
Juliet Jiang juliet.jiang[at]duke.edu

Classroom Location: LSRC D106

Classroom Location: LSRC D106

Teaching Assistants:
Abdumalik Abdukayumov
abdumalik.abdukayumov[at]duke.edu
Joe Arch, joe.arch[at]duke.edu
Juliet Jiang juliet.jiang[at]duke.edu

Recitation Hour: TBA for each homework

Prerequisite: calculus, linear algebra, basic programming experience (in any program language)

Text books: at least one among the recommended (off or/and on line), choice based on personal background and research relevance

References: Suggested in lecture notes and assignments

Work load and evaluation:

* 15% warmup homework assignment (for add/drop decision)
* 25% homework-1
* 25% homework-2
* 25% final exam (take home)
* 10% attendance

Homework grading:

Each homework has two parts: theoretical analysis and computational experiments
Two persons per team; intra-team, inter-team communication or/and collaboration are encouraged

- individual points on analysis portion; team points on team experiment;
- reward on creative ideas and approaches;
- reward on post-grading correction within a week, up to 50% of the lost points
- penalty on delay, inadequate citation or/and acknowledgments; punishment on plagiarism

Exam grading:

- independent work, individual points, no post revision/correction

Homework tools:

+ LaTeX for text processing: drafting, editing, revising and viewing (in generated PDF);
+ MATLAB for data processing: algorithm prototypes, numerical experiments, result evaluation and rendering
Basic and integral topics & components

1. Basics of the basic
 - Convolutions (continuous & discrete)
 - Applications in statistic analysis, pattern matching or learning, compression
 - Convolution theorems (continuous & discrete)
 - Dual relationship between spatial analysis and spectral analysis
 - Data Fitting & Compression
 - Interpolation models and methods (extrapolation)
 - Sampling (predetermined, adaptive) and sample translation
 - Data fitting (exact, error-tolerant)
 - Compression (lossy, lossless), decompression (reconstruction)
 - Numerical calculus
 - Numerical integration: low dimension, high dimension
 - Numerical differentiation: discretized/discrete gradients
 - Numerical diffusion: regular & irregular (graph Laplace)

2. Numerical linear algebra
 - Compressive processing of large and structured matrices
 (relationship to compressive sensing)
 - Linear least squared optimization:
 Geometric projections and least-residual equations
 - Direct methods:
 - specially structured linear systems;
 - factored linear systems and factorization methods;
 - conjugate gradient method and its geometric properties
 - Iterative methods:
 - fixed point iterations: (stationary, non-stationary, adaptive)
 - conjugate gradient method and its spectral properties

Convergence analysis and stability analysis will be introduced.

3. Nonlinear system of equations & Optimization
 - Rootfings: polynomial equations, matrix eigenvalue problem
 - Non-linear equations arising in non-linear optimization
 - Local linearization, or linearization sequence
 - Graph spectra, near-neighbor graphs

4. Ordinary and partial differential equations
 - numerical solutions to ODEs and PDEs
 - data modeling with differential equations

We attempt to make connections to large data analysis in modern computation practice and applications, via class projects; and we encourage intellectual, mutually stimulative communication and collaborations with teammates and classmates.