
AN EMPIRICAL STUDY OF NOVICE PROGRAM
COMPREHENSION IN THE IMPERATIVE

AND OBJECT-ORIENTED STYLES

Vennila Ramalingam and Susan Wiedenbeck
Computer Science and Engineering Department

University of Nebraska
Lincoln, NE 68588-0115 USA

Susan @cse.unl.edu

KEYWORDS: object-oriented programming, imperative programming, novices, mental
representation, pro,oram model, domain model, program comprehension

ABSTRACT
The objective of this study was to determine whether the mental representation of object-oriented
programs differs from imperative programs for novice programmers. In our study novices who had
little or no previous programming experience studied and answered questions about three
imperative and three object-oriented programs. The questions targeted information categories
making up the program model and the domain model representations of the programs. It was
found that there was a sharp contrast between the mental representations of the imperative and
object-oriented programs. While the comprehension of the imperative programs was better overall
than that of the object-oriented programs, the mental representations of the imperative programs
focused on program-level knowledge. On the other hand, the mental representations of the object-
oriented programs focused more strongly on domain-level knowledge. The results tend to support
the view that language notations differ in how well they support the extraction of various kinds of
information.

1. INTRODUCTION
Research on programming in the 00 style has begun to appear, for example, the 1995 Special
Issue offhnan-Contpttterhteraction on object-oriented programming. However, the number and
type of empirical studies of object-oriented programming are still fairly limited. To date, it
appears that studies of 00 programming have concentrated primarily on program design, and
secondarily on reuse and maintenance. We are aware of only one study which focuses directly on
comprehension in the 00 style (Burkhardt, DCtienne, and Wiedenbeck, 1997). Furthermore, most
previous studies involve either 00 experts or else experienced programmers learning to program in
the 00 style after substantial student or professional experience in the imperative style. Also,
there have been few attempts to compare comprehension of programs written in the object-oriented
and the imperative styles.

In this research, we investigated the comprehension by novices of small programs written in the
imperative or the 00 style. Our objective was to evaluate the mental representations formed “
during comprehension of the programs and, in particular, to compare the mental representations
and comprehension of the imperative and the object-oriented programs. Thus, this work makes
use of the comprehension model of Pennington (1987a, 1987b), which investigated the detailed
mental representations formed by programmers studying programs written in the imperative style.
Our question was whether we would find differences in the mental representations of the object-
oriented and imperative programs which might be explained by characteristics of the respective
paradigms.

The following section of the paper reviews related studies on program comprehension. The third
section presents our methodology, the fourth section the results, and the fifth section a discussion
of the results. Finally, the sixth section concludes with remarks about the Iimitations of this
research and plans for future study.

124

2. BACKGROUND AND PRIOR RESEARCH
Program comprehension is the process of understanding a program written by oneself or someone
else, normally for the purpose of doing some further task with the program which requires
understanding. Program comprehension is a critical task in organizations for two reasons: 1)
programmers change jobs frequently and new people are constantly being added to projects,
requiring them to understand program parts that have already been written, and 2) most
programming does not involve writing a program from scratch but instead starts from the basis of
existing programs. In fact, a whole job category in the programming industry is “maintenance
programmer,” i.e., programmers who specialize in adding to or modifying the functionality of
programs in use. These programming activities are founded on program comprehension. Other
activities are also comprehension-related, e.g., program debugging, in which finding a bug often
requires comprehending the buggy program, and code reuse, which requires comprehension of
reusable components that will be incorporated into a new design.

Pennington’s model of program comprehension (1987a. 1987b) is derived from influential models
of text comprehension which have been developed and refined over the past 20 years (Johnson-
Laird, 1983; Schmalhofer and Glavanov, 1986; van Dijk and Kintsch, 1983). These models of
text comprehension are layered in that the reader is seen as forming a mental representation of a
text which has multiple levels. This layered mental representation is then the basis for carrying
out comprehension-demanding tasks with the text, for example, answering questions,
summarizing, or paraphrasing it. The lowest layer in the mental model is the surface form
representation, which is the reader’s verbatim memory of the text. This representation is identical
to the text or mirrors it closely. The textbase representation is more abstract than the verbatim
representation. It contains knowledge about the propositions present in the text and the structure
that propositions form in the text. This knowledge, known as text microstructure and
macrostructure, is an abstraction from the verbatim surface of the text, but it is still based on
propositions and relationships which are explicitly available in the text. A representation of the
text microstructure and macrostructure is built automatically during reading. The highest level of
abstraction is the situation model, which is the reader’s representation of the situation in the world
which the text describes. The situation model is based not just on information in the text, but
rather on information in the text combined with the reader’s own knowledge about the domain
described in the text. The situation model is, thus, derived from inferences about the text which
rely on reader’s relevant knowledge. This being the case, it is clear that the formation and richness
of the situation model depend strongly on the extent of the reader’s domain knowledge and the
effort made by the reader to draw inferences from the text (Mills, Diehl, Birkmire, and Mou,
1995).

Pennington’s model of program comprehension (1987a, 1987b) applies the layered model of text
comprehension to program texts. Beyond the surface form representation of the program text,
Pennington describes two levels, the program modeI and the domain model. The program model
is analogous to the textbase in text comprehension theory, while the domain model is analogous
to the situation model. The program model is made up of operations and control flow knowledge.
These two kinds of knowledge have in common that they are at a low level of abstraction, and
they represent knowledge that is explicitly available in the program text. Operations knowledge
has to do with specific elementary operations that are carried out in the source code. These
operations are usually represented by one line of code, for example, incrementing a counter would
be an elementary operation. Control flow knowledge has to do with the order in which lines of
the source code are executed. The default order is sequential, but that may be modified by looping,
branching, and calls to functions. Pennington’s model proposes that programmers extract control
flow information from a program text while reading and comprehending it. The domain model
consists of data flow and function knowledge. Data flow concerns transformations which occur to
variables as a program executes. These transformations change the data from its input state to its
output state, so they are fundamental to the goals of a program. Because of this close connection
to program goals, data flow knowledge may be considered a part of the domain model. Data flow

125

is often difficult to understand in a program when variables form part of delocalized plans
(Littman, Pinto, Letovsky, and Soloway, 1986), in which related data transformations are carried
out in non-contiguous segments of the code. Function knowledge concerns the goals which a
program accomplishes. For example, the overall function of a program might be to create a list of
all students who are eligible to graduate with high honors. Program function, like data flow, can
be difficult to determine because it is embodied, not in a single line of code or a few lines of code,
but in an ensemble of coordinated program actions, or plans (Soloway and Ehrlich, 1984), perhaps
spread across multiple program units. To understand the function of a program, the reader must
invest the effort to gain mastery of these elements. Furthermore, understanding of the program’s
function may depend on the reader’s pre-existing knowledge of the domain of the program. State
knowledge was a fifth knowledge category included in Pennington’s model. State relations are
defined as “the connections between execution of an action and the state of all aspects of the
program that are necessarily true at that point in time” (Pennington, 1987a, p. 101). Pennington
(1987b) does not assign state knowledge to belong to either the program or the domain model, but
observes that this type of knowledge would not likely be facilitated by the notations of existing
programming languages.

Pennington carried out two empirical studies to test her model of program comprehension, In the
first study (Pennington 1987a, 1987b), professional programmers studied brief programs written in
an imperative language, either FORTRAN or COBOL according to the subject’s expertise. After
studying each program, the subject answered from memory a set of five questions, one each on
operations, control flow, data flow, function, and state. It was found that a strong program model
was formed, i.e., the mental representation was dominated by information about operations and
control flow. Domain model information was more poorly represented; and, in particular, function
knowledge was often lacking. However, the more expert programmers (i.e., those who scored
highest in terms of total score across the question sets) showed a tendency to have a higher
proportion of correct function information available in their representations. State information
was poorly represented in the mental representations of all subjects.

In a second experiment (1987a, 1987b) professional programmers first studied a longer imperative
program, then answered questions about it in the same five information categories. In a second
phase of this experiment, they carried out a program modification, then answered another set of
comprehension questions. The results of the first question set , given after the study phase, showed
a similar pattern of results to the short programs: the program model dominated and there was a
much higher error rate on the domain model. After the program modification, the results changed.
The domain model became dominant with low error rates on function and data flow knowledge.
Error rates did not decrease, or even increased a bit, on program model knowledge. Pennington
uses the results of these two studies to argue for the cognitive validity of the distinction between
the program model and the domain model. She also uses the results of the modification phase in
the second experiment to argue that the performance of comprehension-demanding tasks is likely
to play an important role in the formation of the domain modeI.

In a related study, Beganz and Hassell (1991) collected think-aloud protocols of PROLOG experts
comprehending a small PROLOG program. From the protocols they extracted the number of
verbalizations falling into different knowledge categories and the temporal ordering of
verbalizations about the knowledge categories. Their results supported Pennington’s dual model.
PROLOG experts concentrated first on data structures, which form a part of the program model,
and later on function, which is the key element of the domain model. Interestingly, data flow
relationships did not appear to be important in the comprehension of the PROLOG program.

Corritore and Wiedenbeck (1991) applied Pennington’s model to the study of program
comprehension by novice imperative programmers. Subjects who were at the beginning of a
second programming course studied and answered questions about small Pascal program segments.
The questions fell into the five categories used by Pennington. It was found that novice
programmers formed mental representations which were strongly program oriented, with little

126

domain-level representation. The correctness of their responses was highest on operations
questions, which were very concrete and closest to the surface representation of the program text.
In a second experiment, the same novice subjects studied a longer Pascal program and answered
questions about it. The results showed that a program-level representation dominated. The
domain model was not well developed, and there was an exaggerated rate of errors on function
questions.

The current work is also related to the stream of research on information extraction in
programming. This work concerns programming language notations. The gist of it is that there
is no superlative notation that is best for all tasks and all users. Instead, a given notation may
facilitate or fail to facilitate a specific programming task. It usually is the case that a notation
which favors a certain task penalizes some other task. For example, Gilmore and Green (1984)
compared procedural and declarative notations on a question answering task. They found that the
procedural notation was superior for answering sequential questions, i.e. questions about what
happens in a program after some action X is performed. On the other hand, the declarative
notation was better for answering circumstantial questions, i.e. questions about what combination
of circumstances in a program will cause action X to be performed. This phenomenon of
information accessibility in programs was referred to by Gilmore and Green as the ‘match-
mismatch conjecture.’ In a similar fashion, work comparin g textual and graphical notations
(Green, Petre, and Bellamy, 1991; Moher, Mak, Blumenthal, and Leventhal, 1993) has shown that
graphical notations are not an ultimate panacea, in spite of claims of them being easier to read,
giving an overview of program structure, and supplying more information. Instead, the critical
questions about a graphical notation, as about any notation, are to what extent does the notation
make certain types of information accessible, and does the user have adequate experience with the
notation type. Good (1996) compared a control flow and data flow representation for presenting
PROLOG programs. Contrary to the previous research, she failed to find that the two
representations facilitated answering questions about the corresponding information categories.
However, a more detailed analysis of the representations and the questions suggested that, even
within a type such as data flow, the structure of the representation may be such that it does not
support well all data flow questions. Thus, the idea of a match between a task and a notation
needs to be expanded to include the idea of degrees of matching.

The research on information extraction is highly relevant to this study because superlativist claims
have been made about object-oriented languages. Advocates have argued that the 00 style of
programming is more “natural” (Borgida, Greenspan, and MylopouIos, 1986; Rosson and Alpert,
1990). The argument is that 00 design, with its focus on active objects, their relationships, their
behaviors, and their interactions, provides a better match to the way that designers conceptualize
problems than does the alternative of decomposition into procedures which act on passive data
structures (Rosson and Alpert, 1990). In effect, designers in the 00 style are seen as working at a
level that is closer to the domain of the problem they are solving (Booth, 1986; Borgida,
Greenspan, and Mylopoulos, 1986). Rosson and Alpert (1990) further suggest that, if the 00
style is indeed more intimately connected to the problem domain, then there should be benefits not
just in program design but also in program maintenance, comprehension, and reuse.

Given the strong empirical evidence against superlativist claims, we approach the comparison of
comprehension of imperative and object-oriented style programs from the more sustainable
viewpoints of mental model formation and information accessibility. One research question is the
nature of novices’ mental representation of programs in the two styles. A second research question
is whether there are differences in information extraction between the two styles which might be
explained by characteristics of the styles and the task performed.

3. METHODOLOGY
In this experiment novice programmers studied six brief C+-+ program segments. Three were
written in the imperative style and three were written in the object-oriented style. After studying a
segment, the program was hidden. The subjects immediately answered from memory a set of five

127

-~ ----__ _- --

../-

1
I

I
” -,,,-

P

comprehension questions about it, one each in the categories: operations, control flow, data flow,
state, and function. The analysis is based on the errors in subjects’ responses.

3.1. Subjects
Seventy-five subjects participated in the study. The subjects were students at a large university
and were enrolled in an introduction to programming course using C-I-+. The course was divided
into a number of small sections taught by different teachers, and students from four sections
participated. The sections of the course were closely coordinated by a lead teacher, who monitored
that the sections covered the same material at approximately the same pace, A common textbook
was used across all sections of the course, and common programming assignments were given,
Participation in the study was voluntary. Students who participated were given a small amount of
credit toward their final grade in the course.

A background questionnaire, which focused on subjects’ computer and programming experience,
was administered before the experimental task. There were 25 female and 50 male subjects. The
subjects came from a variety of undergraduate majors, and slightly less than half were computer
science majors. Most of the subjects were second or third year undergraduate students, Their
average age was 20 years. On average the subjects had first been introduced to computer use in
junior high school. They had taken an average of 1.27 programming courses in high school and
college (exclusive of the course from which they were recruited), and they were familiar with 1.37
programming languages (including C-t-+, which they were learning in the current course). They
reported having taken 2.75 courses in high school or college in which they used computers as
tools, for example word processing, spreadsheets, or educational software. The mean number of
programs they had written was between 11 and 20. On average they estimated their longest
program as 21-50 lines of code.

The course in which the subjects were enrolled taught problem solving and programming in C++.
It began with the fundamentals of programming, including basic data types, variables, assignment,
arithmetic operations, comparisons, branchin*, 0 looping, and functions. After several weeks on the
fundamentals, object-oriented concepts were introduced. The object-oriented concepts taught at this
point included classes, encapsulation, overloading, and message passing. Once these object-
oriented concepts were motivated and discussed, students were presented with many examples of
programs written in the object-oriented style in both their lectures and textbook. Students then
began writing programs of their own using classes, encapsulat,ion, and message passing. More
advanced object-oriented concepts, such as inheritance and polymorphism, were also discussed in
order to further motivate the 00 style. However, while students were aware of these features, they
did not see examples or write programs of their own using them.

3.2. Materials
The materials consisted of six programs. All of the programs were written in C-I-I-. In order to be
able to compare subjects’ comprehension in the two styles, three of them were written using
object-oriented features of C++, while the other three were written without object-oriented features,,
This was accomplished by taking advantage of the fact that C++ is an object-oriented superset

.

which contains imperative C, so a student learning C++ essentially learns C as well.’ For
convenience we refer to the two program styles as object-oriented and imperative, while
acknowledging that C and C-I-+ are both imperative languages at base.

The object-oriented programs each contained a class, in which the main computation of the
program was done. The main procedure instantiated one or more objects of the class and then
passed a message to a function of the class asking it to do a computation. The 00 style programs
were brief, their listings fitting on a single sheet of paper. Each 00 style program contained only
one class and did not use more complex 00 features, such as inheritance and polymorphism,
These features were not incorporated because they were beyond the level of programming
experience of the subjects. The programs were also designed with the intention of excluding the
effect of domain knowledge from the subjects’ performance. This was done by selecting domains

128

that were within the normal experience of all subjects. Program A declared a class Rectangle and
contained a function which determined whether a given Rectangle object was a square. Program B
defined a Car class and contained a function which could determine whether a car object was
traveling above the speed limit. Program C declared a Washing-Machine class and contained a
function to simulate the actions of a washing machine.

The imperative style programs were written in the imperative C subset of C++, with the one
exception that they used C++ stream I/O, since the subjects were familiar with those conventions.
The programs did not contain objects, classes, or message passing. Instead they contained simply
a main program. The main program declared variables and then carried out the computations of the
program. The imperative programs were slightly shorter than the object-oriented programs since
the 00 programs had the overhead of class definitions. The three imperative programs were used
previously in a study by Conitore and Wiedenbeck (1991), and were used here for comparison with
the earlier study. In this experiment the questions associated with the programs were slightly
different. Program D read in two numbers, summed the pair of numbers, and printed out the sum
with identifying messages. These actions were embedded in a loop which repeated the activities 10
times. Program E read in an amount of change from 1 to 99 cents, then calculated how to make
change in the largest denominations possible (quarters, dimes, etc.). Program F read in integers
until a sentinel value. A running sum and count were kept, and at the end of the input the average
was calculated and printed. Like the 00 programs, all three programs could be understood without
specialized domain knowledge on the part of the subjects.

Five comprehension questions were created for each program. There was one question each on
operations, control flow, data flow, state, and function. Operations questions asked about some
single line operation in the program, such as whether a certain variable was assigned a particular
value. Control flow questions asked about the order in which operations were carried out, i.e.,
whether a certain operation was executed before some other operation. Data flow questions asked
about data transformations. As in Pennington’s work (1987a, 1987b) the questions were stated to
ask whether a certain variable affected the value of another variable in the program. State
questions asked the state of a certain variable when a certain point in the program was reached.
Finally, function questions asked about the goals achieved in the program, i.e., what the program
did. Each question had a yes/no answer. Appendix A shows sample programs and questions for
the imperative and object-oriented styles.

3.3. Procedure
Subjects were run in a class session during the twelfth week of a fifteen week semester. At this
point subjects had studied basic language structures through functions, classes, and arrays. They
had written programs targeting all of the features used in the experimental programs The testing
was done with paper and pencil. Subjects first filled in a demographic questionnaire. Then they
were given a booklet containing the programs and their associated question sets. Each program
was printed on a single page by itself. The questions for the program followed on the next page.
The order of presentation of the programs was counterbalanced. Subjects were given 2 minutes to _
study the program, and were instructed not to turn the page before being told to do so by the
experimenter. After that, they were given 1.25 minutes to answer the questions. These times
were chosen after pre-testing was done to determine how much time subjects needed to study the
programs and answer the questions. The same procedure was repeated for each of the six programs.

3.4. Limitations of the Design
Several limitations of the experimental design should be borne in mind in reading and interpreting
the results.

Longer exposure to the C subset. The subjects had longer exposure to the C subset
than to C++. They had used the imperative C constructs, which formed the basis for the
imperative, programs, for 12 weeks. The Ctt concepts of classes, encapsulation, and message
passing had been used for about 8 weeks.

Lack of a criterion for comparability between programs. Because the experiment
used a repeated measures design, different problem sets were used for the imperative and 00
cases. While these were all brief and simple programs, we have no criterion of comparability
to use to argue about their “equivalence” for experimental purposes. Notably, the 00
programs were systematically slightly longer than the imperative programs because of the
overhead of declaring classes. The program sets also differed in that the 00 programs carried
out their main computation in a member function of a class, whiIe the imperative programs
carried their main computation out in the main program.

Representativeness of the materials. The programs were very small. Certain features
of C were not used, including function calls and parameter passing. Certain defining features
of the 00 style were also not represented, including inheritance and polymorphism. This
limits the representativeness of these results.

4. RESULTS
A preliminary analysis was done to determine whether there was a significant difference in
performance among subjects enrolled in the four different course sections. A one-way ANOVA
was run with section as the independent variable and number of errors on the comprehension
questions as the dependent variable. The result was not significant. Therefore, we did not include
section as a variable in further analyses.

Our data analysis began with the whole set of six programs. The mean percentage of errors across
all questions on the six programs was 18.36. The mean percentage of errors in each question
category is shown graphically in Figure 1. A one-way repeated measures Analysis of Variance
was used. The independent variable was the question category with five levels: operations, control
flow, data flow, state, and function. The dependent variable was percentage of erroneous responses
out of the total number of questions in each question category. The ANOVA was significant (F(4,
384) = 10.96, p < .OOOl). Newman-Keul’s test was run as a follow-up. It showed that there were
significantly more errors on state questions than on operations, contro1 flow, and function
questions (p c .0.5). The only other significant difference was that there were more errors on dam
flow than on function questions (p < -OS).

Figure 1. Mean error percentages in the five question categories for all programs

Percentage of 15

Errors 1o

5

0
Operations Control Data Flow State Function

Flow

Question Category

The one-way analysis represents overall performance on the comprehension questions, but it does
not account for possible differences based on program style. Thus, another analysis was done to

130

investigate the influence of the two program styles. The mean error percentage of the imperative
group across all question categories was 13.05 (sd = 10.49). For the object-oriented group, the
mean error percentage across all question categories was 23.64 (sd = 12.73).

‘Ihe mean error percentages for the imperative and object-oriented program sets broken down by the
five question categories are graphed in Figure 2. A two-way within subjects Analysis of Variance
was carried out. One independent variables was question category, consisting of five levels:
operations, control flow, data flow, state, and function. The other independent variable was
program style: imperative or object oriented. The dependent variable was percentage of erroneous
responses out of the total number of questions in each question category. The ANOVA showed
that there was a significant main effect of question category (F(4,384) = 10.96, p < .OOOl) and of
style (F(1,96) = 56.22, p < .OOOl). There was also a significant two-way interaction of question
category and style (F(4, 384) = 13.92, p < .OOOl). Newman-Keul’s test was used for follow-up
testing. It showed that there were differences both within and between the two programming
styles. Within the imperative style, errors on operations and control flow questions did not differ
from each other, but they were significantly lower than the errors on data flow, state, and function
questions (p < .OS). Within the object-oriented style, data flow and function questions had
significantly lower errors than control flow and state questions. (p < .OS), while operations
questions did not differ significantly from any of the other categories. Between styles there were
significant differences on operations, control flow, state, and function (p c .05).

Figure 2. Mean errors percentages in the five question categories
for the imperative and object-oriented program sets

30 c

25 --

20 --

15 --

10 --

5 --

Operations Control Data Flow State Function
Flow

Question Category

Finally, we compared the subjects with the lowest overall error rate across all question categories,
Quartile 1, to those with the highest overall error rate, Quartile 4. The objective was to see
whether the more skilled subjects differed from the less skilled subjects in their mental

131

representations of the imperative and object-oriented programs. The middle two quartiles were
dropped out of this analysis. The means are shown in Figure 3. A three-way mixed model
Analysis of Variance was run. The between subjects factor was quartile with two levels: Ql (n =
21) and 44 (n = 22). The within subjects factors were question category with five levels and style
with two levels, as in the previous analysis. The quartile factor was significant (F(1, 41) =
332.39, p c .OOOl). Question category approached significance (F(4, 164) = 2.02, p < .094).
Style was not significant. Of the two-way interactions, only the question category by style
interaction was significant (F(4, 164) = 5.02, p < .OOl). The three-way interaction was not
significant. Follow-up tests were not performed because-the two and three-way interactions
involving quartile, the new factor in this analysis, were not significant.

,

Figure 3. Mean error percentages in the five question categories for Ql and 44
in the imperative and object-oriented program sets

Operations Control Data Flow State
Flow

Question Category

Function

5. DISCUSSION
The comparison of the imperative programs to the object-oriented programs showed that there were
higher overall error rates in the 00 style. We cannot explain this definitively, but have
previously suggested some methodological issues which may have played a role, particularly the
question of the comparability of the C and C-H problem sets and the longer time the subjects had
spent working with the C subset of C-H-. The comparability issue could be addressed in a future
study by using a fully randomized design employing the same programs written in the two
different styles. On the other hand, if the explanation of the overall difference between styles lies
in lesser familiarity with 00 features and what they entail, we would expect the gap between the
00 and imperative programs to diminish with further training in the 00 paradigm. An
interesting question is how long the gap would persist and if the learning curve is steeper for C-t+
than for C.

132

While, the question of why the imperative style had fewer overall errors is interesting, the main
point of our comparison is not the overall errors but the nature of the mental representation formed
in the two programming styles. This comparison of mental representations may still be made,
and be very informative, in spite of the difference in overall error rates. Considering the
performance in the different question categories on the imperative and the 00 programs, we find
clear evidence of differences in mental representation between the two styles. As Figure 2 shows,
the pattern of response to questions on the two program sets was very distinct. For the imperative
style, there were few errors on operations and control flow questions, but much higher errors on
data flow, function, and state questions. This supports the argument that operations and control
flow information was easily accessible in the programs, and that subjects formed a program-level
mental representation. This program-level representation is comparable to the textbase
representation in text understandin g, i.e., a representation based on relationships explicitly given
in the text. Generally, the results are quite similar to those found by Pennington (1987a, 1987b),
Berganz and Hassell (1991), and Corritore and Wiedenbeck (1991) in their studies of mental
representation in other procedural languages (FORTRAN, COBOL and Pascal). In these prior
studies, the program model was dominant in the mental representation after initial study of a
program, as it was here. Thus, the imperative programs in this study, using the C subset of CM-,
provide further support for Pennington’s model with respect to imperative programming: the
program model and domain model appear to be distinguishable entities containing operations and
control flow information on the program side vs. data flow and function information on the
domain side. The state category, which Pennington did not assign to either the program or domain
model, had a high error rate here, as in prior research. This again supports Pennington’s
contention that state information is difficult to extract from programs and not very available in
programmers’ mental representations of imperative programs.

For the 00 style programs, the error rate was higher for control flow questions than for data flow
and function questions. State questions had high error rates as in the imperative program set and
in all past research. These results suggest that data flow and function information was accessible
in the program and that subjects used it to form primarily a domain-level mental representation. It
is notable that, in spite of higher overall error rate on the 00 program set, the error rates on data
flow and function questions were less than for the imperative program set. The program model,
on the other hand, was weaker for the 00 program set than for the imperative program set. The
finding of a strong domain-based representation after initial study of an 00 program contrasts with
Pennington’s and Corritore and Wiedenbeck’s findings of a strong program model after initial study
of an imperative program. However, in one of her studies of imperative programmers, Pennington
(1987a) also measured the mental representation of her subjects in a second time frame, after the
subjects had performed a modification of the program. Here the results were strikingly similar to
our results for the 00 programs after initial study: errors were low on domain model questions but
high on program model questions. Pennington argues that this indicates rhai the domain model is
built more slowly through working with a program in the context of a meaningful programming
task. - .

The fact that a strong domain representation was built in initial study of the program in this
experiment may be interpreted as support for Gilmore and Green’s results (1984), showing that
extracting information from programs is easier when the language structure reveals the kind of
information in question and harder when it does not. Brooks (1983) portrays program
comprehension as reconstructing all or part of the mappings which were made by the original
programmer between a problem and the programming artifact. This experiment suggests that the
00 style, as implemented in these simple programs, made some of the mappings more salient,
namely the critical mappings of data flow and function.

Pennington reported that the subjects who comprehended best were those with “cross referenced”
mental representations, i.e., those who developed a mental model containing a fairly balanced mix
of domain and program-level representation. Subjects who built a strong program model with

,,, 1

i
. I i. .,

little domain representation could fail to grasp the ultimate goals of a program. On the other
hand, subjects who built a strong domain model with little program representation could end up
with an understanding of a program which was too high-level and disembodied from the code to
support programming tasks. The ideal combination is a balanced representation. With respect to
the current results, it is difficult to say whether the strong domain model representation of the 00
style programs and the weaker program model representation is balanced enough to effectively
support programming tasks. However, it may be observed (Figure 2) that the contrast in scores
between the program model and the domain model was less in the 00 style than in the imperative
style. This suggests that there may be greater balance between the program and domain models in
the 00 style. However, further research is needed on this question.

The breakdown of the results by quartile (Figure 3) shows that in Ql, the better comprehenders,
the pattern of results on both the imperative and 00 programs is very similar in terms of the
genera1 shape of the curve to that of all subjects (Figure 2). In 44, the poorest comprehenders, the
shape of the curve for the imperative programs is similar to that of all subjects. However, the
relative distribution of errors on the 00 programs in 44 looks slightly different, with an error rate
on state questions that is proportionally less extreme, combined with a proportionally higher rate
of errors on function questions. The most interesting trend in the quartiles data is that the rate of
errors on function questions is extremely low on the 00 style for Ql (mQ1-function = 1.59
percent), while the error rate on these questions in Q4 does not drop off as in Ql(mQ4-function =
39.39 percent), or as is seen in the data for all 00 subjects in Figure 2. Thus, the best
comprehending subjects built a mental representation that had a very strong component of function
knowledge. Since these subjects were novices, we may assume that the subjects in Ql were more
advanced on the learning curve of C++. It may be that the poorer comprehenders had more
difficulty assimilating and taking advantage of the object-oriented nature of the 00 programs.
Thus, a key component of their domain model was Iess developed.

6. CONCLUSION
The results of this study indicate that novice programmers comprehending an 00 style program
form a strong domain model, while novices comprehending an imperative style program form a
strong program model. In the experiment this was shown by the low error rate in the imperative
style on both operations and control flow questions, which together make up the program model.
Correspondingly, in the 00 style there was a low error rate on data flow and function questions,
which make up the domain model. Thus, the two styles differed in the nature of the mental
representation formed by subjects during study of a program.

We interpret the results in terms of building mappings. In program design the problem is
establishing mappings between real world entities and their representation in a program. In
program comprehension the problem is making reverse mappings from the given program to an
understanding of the real world entities and actions involved. This research suggests that the 00
style facilitates the mapping from the program to the domain for novice programmers working on
small and simple programs. This may be because there is more explicit and salient domain-related :
information in the 00 style programs than in the imperative style programs. On the other hand,
the 00 style programs appear to have obscured operations and control flow.

The present study is one of what should eventually be an ensemble of empirical studies of object-
oriented program comprehension. While this study did find distinct differences in the mental
representation of imperative and 00 style programs, its limitations leave many questions which
provide directions for future research. Also, the results raise new questions which may be pursued.
These issues are discussed in the following paragraphs.

One important question which arises from our results concerns the overall level of comprehension
of the 00 programs. It was found that novices comprehending the 00 style programs formed a
stronger domain model than program model. However, at the same time, they performed more

134

- -,

poorly on overall comprehension of the 00 style programs then they did on the imperative style
programs. There are several reasons why this might be the case, as suggested earlier. First, the
overall comprehension difference might be mitigated if the experimental materials and procedure
were redesigned. Second, the difference might be related to the learning curve of the 00 style
being higher. Here the argument would be that 00 programmers must learn the basics of the
imperative style, including data types, assignment, branching, looping, and functions, as well as
the 00 features. There may simply be more for novices to master in the 00 style, resulting in a
steeper learning curve. We believe that this is a plausible explanation of our results. We have
some preliminary evidence that supports the steeper learning curve hypothesis and suggests that
the learning curve problem continues beyond the first programming course (Wiedenbeck,
Ramalingam, Sarasamma, and Conitore, 1997). It appears that longer term research which studies
the learning curve of 00 novices is called for. Only then will we be able to evaluate what the
higher overall error rate in the 00 style means.

Given our interpretation that this experiment supports the view of the match-mismatch conjecture,
it is important not to over-interpret the results. Two specific computational models were
contrasted, both embedded in the C/C++ language. This one experiment is not representative of
all form of 00 and imperative languages. Other 00 languages, such as Smalltalk and Eiffel, may
differ in significant ways from C-I-+, and these differences may affect information extraction and
consequent mental model building.

Along these same cautionary lines, the experiment does not tell us how the 00 style affects
comprehension and mental model building of expert programmers working on more complex
programs. We have no indication of whether experts would form a strong domain model during
comprehension of a large 00 program. From a pedagogical viewpoint it is important to know
what is the effect of the 00 style on learners, which we have studied here. However, it is equally
important, if not more so, to understand how the 00 style affects professional programmers. The
finding of differences in the mental representation of imperative and 00 programs in this study
makes further study of such questions interesting. Work on the mental representation of 00
programs by experts is in progress (Burkhardt et al., 1997).

Another limitation is this experiment is that it failed to ask questions specifically about the static
contents of classes, which was an essential difference between the 00 and imperative styles, as
implemented in our materials. Thus, for instance, we do not have direct evidence about whether
the subjects gained a good mental representation of the attributes of objects. The reason for this
omission was to make it possible to ask the same categories of questions about both the 00 and
imperative style programs, thus facilitating a comparison. Other 00 features, such as inheritance
and polymorphism, were not investigated because they were beyond the scope of the experience of
our novice subjects. However, further studie: of comprehension are needed which determine the
role played in the mental representation of specifically object-oriented features. This questions of
the role of objects and other 00 features in the mental representation merits further study.
Preliminary results from a study of 00 experts (Burkhardt et al., 1997), suggest that classes and
the relationship of classes form an important part of their mental representations. The role of
other 00 features in mental representations is also is of interest and may be studied for experts or
advanced novices in more complex pro--s.

Pennington’s work suggests that a cross referenced mental representation, containing a balanced
mix of program and domain knowledge, is associated with better program comprehension. It
appears that skilled program comprehendem consider the program world and the domain world
simultaneously and explicitly link their understanding of the two. In our study, the mental
representations of the novice subjects did not appear to have great balance. The imperative style
was associated with a strong program model and the 00 style with a strong domain model.
Further study is required to determine whether, and at what stage of development, novices begin to
develop more balanced mental representations, in either style.

135

-- _._ __ -____-_-

Pennington found the emergence of a cross referenced mental representation after the performance
of a modification task. Our experiment required study of the programs for comprehension but did
not involve the performance of a further comprehension-demanding programming task. While a
task of reading and answering questions about a program is not unusual for novices enrolled in
computer science courses, Pennington’s results suggest the need for further studies which
incorporate a task element. It may also be necessary to study novices at different levels of
development to observe the emergence of comprehension strategies. Furthermore, if performance
of programming tasks changes the nature of programmers’ mental representations, then it is also
necessary to study how difleerent tasks affect the representation. Different comprehension-
demanding tasks, such as modification vs. reuse, may affect the mental representation in different
ways. Even a single task type, such as modification, may have different effects on the mental
representation depending on the kind of modification, for example a localized vs. delocalized
modification (Littman et al., 1986; Koenemann and Robertson, 1991). Thus, not just task effect
in a global sense, but the specific nature of the task, may be of considerable importance.

REFERENCES

Bergantz, D. and Hassell, J. (1991). Information relationships in PROLOG programs: how do
programmers comprehend functionality? International Journal of Man-Machine
Studies, 35, 313-328.

Booth, G. (1986). Object-oriented development. IEEE Transactions on Software
Engineering, SE-12(2), 211-221.

Borgida, A., Greenspan, S., and Mylopoulos, J. (1986). Knowledge representation as the basis
for requirements specifications. In C. Rich and C. R. Waters (Eds.), Readings in Artificial
Intelligence and Software Engineering (pp. 561-570). LOS Altos, CA: Kaufmann.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs,
International Journal of Man-Machine Studies, 18, 543-554.

Burkhardt, J-M., DCtienne, F., and Wiedenbeck, S. (1997). Mental representations constructed by
experts and novices in object-oriented program comprehension. INTERACT’97 Conference
Proceedings, to appear.

Corritore, C. L. and Wiedenbeck, S. (1991). What do novices learn during program
comprehension? International Journal of Human-Computer Interaction, 3(2), 199-
222.

Gilmore, D. J. and Green, T. R. G. (1984). Comprehension and recall of miniature programs.
International Journal of Man-Machine Studies, 21, 31-48.

Green, T. R. G., Petre, M., and Bellamy, R. K. E. (1991). Comprehensibility of visual and
textual programs: a test of superlativism against the’match-mismatch’ conjecture. In J.
Koenemann-Belliveau, T. G. Moher, and S. P. Robertson (Eds.), Empirical Studies of
Programmers: Fourth Workshop (pp. 121-146). Norwood, NJ: Ablex.

Good, J. (1996). The ‘right’ tool for the task: an investigation of external representations,
program abstractions and task requirements. In W. D. Gray and D. A. Boehm-Davis (Eds.),
Empirical Studies of Programmers: Sixth Workshop (pp. 77-98). Norwood, NJ:
Ablex.

Johnson-Laird, P. N. (1983). Mental models: Towards Cognitive Science
Language, Inference, and Consciousness. Cambridge: Cambridge University Press.

136

of

Koenemann, J. and Robertson, S. (1991). Expert problem solving strategies for program
comprehension. CHI’91 Proceedings (pp. 125130), New York: ACM.

Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. (1986). Mental Models and Software
Maintenance. In E. Soloway and S. Iyengar (Eds.), Empirical Studies of Programmers
(pp. 80-98). Norwood, NJ: Ablex.

Mills, B. C., Diehl, V. A., Birkmire, D. P. & Mou, L-C. (1995). Reading procedural texts:
effects of purpose for reading and predictions of reading comprehension models. Discourse
Processes, 20, 79-107.

Moher, T. G., Mak, D. C., Blumenthal, B., and Leventhal, L. M. (1993). Comparing the
comprehensibility of textual and graphical programs: the case for Petri nets. In C. R. Cook, J. C.
Scholtz, and J. C. Spohrer (Eds.), Empirical Studies of Programmers: Fifth Workshop
(pp. 137- 16 1). Norwood, NJ: Ablex.

Pennington, N. (1987a). Comprehension strategies in programming. In G. M. Olson, S.
Sheppard, and E. Soloway (Eds.), Empirical Studies of Programmers: Second
Workshop (pp. 100-113). Norwood, NJ: Ablex.

Pennington, N. (1987b). Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychology, 19, 295341.

Rosson, M. B., and Alpert, S. R. (1990). The cognitive consequences of object-oriented design.
Human-Computer Interaction, 5(4), 345-379.

Schmalhofer, F., and Glavanov, D. (1986). Three Components of Understanding a Programmer’s
Manual : Verbatim, Propositional, and Situational Representations. Journal of Memory and
Language, 25, 295-3 13.

Soloway, E. and Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-10(5), 595-609.

Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. (1982). What do novices know about
programming? In A. Badre and B. Shneiderman (Eds.), Directions in Human-Computer
Interaction (pp. 27-54). Norwood, NJ: Ablex.

van Dijk, T. A. and Kintsch, W. (1983). Strategies of Discourse Comprehension. New
York: Academic.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., and Corritore, C. L. (1997). A . _
Comparison of the Comprehension of Object-Oriented and Procedural Programs
by Novice Programmers. Departmental Report, Computer Science and Engineering
Department, University of Nebraska-Lincoln.

137

--- :- :- -. --

J

APPENDIX A

1. IMPERATIVE STYLE PROGRAM

#include <iostream.h>

int main0
I

int Amount;
tout -Z-C ‘7nEnter an amount of change from 1 to 99 cents w’;
tin >> Amount;
int Quarters = Amount / 25;
int AmountLeft = Amount % 25;
int Dimes = AmountLeft / 10;
AmountLeft = AmountLeft % 10;
int Nickels = AmountLeft / 5;
AmountLeft = AmountLeft % 5;
int Pennies = AmountLeft; , I
tout C-C Amount KC “ can he given as : ” CC Quarters cc “quarters “ CC Dimes CC

“dimes “ CC Nickels c-z “nickels “ -CC Pennies << “pennies.\n”;
return 0;

I

Questions

1: Is the variable Pennies initialized to O?

. [Yes / No]

2. Is the number of quarters needed calculated before the number of dimes needed?

. [Yes / No]

’

L

3. WiII the value of AmountLeft affect the value of Pennies?

.*... [Yes / No]

4. Does AmountLeft have a value before Quarters is assigned a value?

. [Yes / No]

5. Does this program compute how to give change in the largest possible denominations?

. [Yes / No]

138

2. OBJECT-ORIENTED STYLE PROGRAM
#include <iostream.h>
class car
1
private:

int Passengers, Speed;
public:

Car(int p, int s);
void check-speedJhnit();

1;

Car::Car(int, int)
1
Passengers = p;
if(p=O)

Speed = 0;
else

Speed = s;
1

void Carzcheck-speed-limit0
1
if (Speed >= 55)

tout << “Over the limit! Slow Down!!! b”;
1

int main0
I
Car mycar(1,25);
mycar.check~speed~limit();
return 0;
1

Questions

1. Is the speed of mycar set to 25?

. ..-.. . . . [Yes / No]

2. Is the output statement executed before the speed is checked?

. [Yes / No]

3. Does the value of Passengers affect the value of Speed?

. [Yes / No]

4. When the tout statement is reached, is the value of Speed less than 55?

. [Yes / No]

5. Does the pro,garn compare the speed of two cars?

. [Yes / No]

