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Interpolation, Approximation

and Their Applications

PART I : Interpolation

We consider the following two basic cases for interpolation in
a subspace of finite dimension.

1. Given a set of data points (xi, g(xi)) = (xi, yi) ∈ X × Y ,
i = 1 : N , X and Y ⊂ R (or C) are the domains xi and yi

reside, respectively. The variable x is assumed to be indepen-
dent, and the points xi are called the interpolation nodes and
assumed distinct. Provided with a specific linear subspace V

of functions in C(X). Find an interpolating function f in V

satisfying the interpolating condition

f(xi) = yi, i = 1 : N.

An interpolation function is also called interpolant. In this
case of interpolation,

¦ The interpolation models a set of tabulated function val-
ues or discrete data into a continuous function. We call
such a process data fitting or curve fitting.

¦ The continuous function (curve) may characterize the re-
lation between variables x and y more than their cor-
respondence at the discrete points. It can be used to
estimate variable y corresponding to a non-nodal point
x ∈ [a, b] − {xi} (interpolation) or to a point outside of
[a, b] (extrapolation).
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¦ For the same set of data, the interpolation changes with
the selection of subspaces. The following are commonly
used for interpolations.

(a) polynomials

(b) splines

(c) trigonometric polynomials

2. Given a function g ∈ Cm(X), m ≥ 1, and its derivatives at
a set of distinct nodes

(
xi, g

k(xi), k = 0 : mi

)
, mi ≤ r ≤ m, i = 1 : N

Provided with a specific linear subspace in Cr(X). Find an
interpolating function f in the subspace satisfying the oscu-
lating condition

f (k)(xi) = g(k)(xi), k = 0 : mi., i = 1 : N.

This is the case of function approximation via interpolation.

¦ The interpolating function f is used to replace or sim-
plify the original function g with certain smooth property
preserved at the discrete interpolation nodes and their
neighborhood. For example, to evaluate a complicated
function one may pre-compute the function at certain
reference or nodal points and evaluate the function at
the other points by the interpolating function. We may
call such a process curve simplification.

¦ In the special case mi = 1, for all i = 1 : N , the first
derivative (tangent lines) of the interpolating function
agrees with the original function at the interpolation
nodes. When the interpolation functions are polynomi-
als, they are called Hermite interpolating polynomials.
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Interpolation with Polynomials

We introduce different approaches for interpolation with polyno-
mials.

Lagrange interpolation

Define the interpolating polynomials Ln,j on the interpolation
nodes

LN,j(xi) = δij, i, j = 1 : N.

In other words, LN,j interpolates the special data (xi, yi) with yj

equal to 1 and yi = 0, i 6= j. Then the interpolating polynomial
is simply represented as

p(x) =
N∑

j=1
yjLj(xi).

It is easy to see that the special polynomials LN.j are linearly
independent if xi are distinct, and hence form a basis for Pn.
Note that each and every of the basis polynomials is of degree
N − 1.

The basis polynomials LN,j can be easily constructed as fol-
lows.
For N = 2,

L2,1(x) =
x− x2

x1 − x2
, L2,2(x) =

x− x1

x2 − x1
.
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For N = 3,

L3,1(x) =
x− x2

x1 − x2
· x− x3

x1 − x3
,

L3,2(x) =
x− x1

x2 − x1
· x− x3

x2 − x3
,

L3,3(x) =
x− x1

x3 − x1
· x− x2

x3 − x2
,

In general,

LN,j(x) =
∏

i6=j

x− xi

xj − xi
, j = 1 : N

These polynomials are known as Lagrange polynomials at the
interpolation nodes xi.

The Lagrange approach is useful in analysis. For example, we
have shown the existence of a polynomial interpolating the data
at distinct nodes.

We have some comments on the evaluation.

¦ Polynomial evaluation with the Lagrange representation is
of high complexity when N the size of data is large. Even
the Neville evaluation method takes O(N 2) arithmetic oper-
ations.

¦ Since each of the Lagrange polynomials is of degree N − 1,
there are cancellations in degree when the data are from a
polynomial of a lower degree. The extreme case is yi = c,
i = 1 : N .

¦ The evaluation complexity can be reduced for the case that
the interpolation points are equally spaced.
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Coefficient determination with a fixed basis

Instead of building the basis functions on every and each set of n

interpolation nodes, we let {bj, j = 1 : N} be a fixed basis of Pn.
Then the interpolating polynomial p can be represented as

p(x) =
N∑

j

αjbj(x).

The interpolation condition gives the interpolating equations for
the combination coefficients




b1(x1) b2(x1) · · · bN(x1)
b1(x2) b2(x2) · · · bN(x2)

· · ·
b1(xN) b2(xN) · · · bN(xN)




=




y1

y2
...

yN



.

Note that if bj(xi) = δij, then bj are the Lagrange polynomials
at the nodes xi, and the matrix is the identity. When the set of
interpolation nodes is changed, the matrix is changed as well. We
find the coefficients by numerically solving the system of linear
equations.

When the basis is {1, x, · · · , xN−1}, the matrix is known as
Vandermonde matrix. It is nonsingular as long as the nodes are
distinct. In other words, the interpolating coefficients can be
determined for any set of data (xi, yi) as long as xi are distinct.
Once the coefficients are obtained, the evaluation at any point x

can be done with O(N) operations. The question left is on the
complexity of solving the equations.

¦ Find out the complexity of existing algorithms for solving
Vandermonde system.

¦ Find out reported problems with the existing algorithms.
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¦ Find an orthogonal basis for Pn and discuss the advantages
and disadvantages.

Interpolation accuracy

We want to estimate the accuracy of interpolation at a non-nodal
point in X. The following accuracy estimation is based on a
smoothness assumption and is in the sense of L∞ norm.

Theorem

(accuracy estimation of polynomial interpolation)

Let g ∈ Cn+1[a, b]. Let pn be the interpolating polynomial at n

distinct nodes xi, i = 1 : n, in [a, b]. Then

g(x) = pn(x) + e(x),

with

e(x) =
f (n+1)(ξ)

(n + 1)!

∏

j

(x− xj), x ∈ [a, b].

¦ The Taylor theorem may be used for the proof of the above
theorem.

¦ The approximation error at a nodal point is zero.

¦ Find some sufficient conditions so that the interpolation error
at any non-nodal point decreases as the number of interpo-
lation nodes increases.

(Consider, e.g. , the trigonometric functions cos(mx) on
[−π, π]. )
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¦ Find some conditions so that that the interpolation error
does not decrease as the number of interpolation nodes in-
creases.

¦ In comparison to approximation by Taylor polynomials, the
interpolating polynomial do not require the evaluation of
derivatives.

¦ When the data is locally changed, the interpolating function
may be changed globally.

Test cases

Consider polynomial interpolation of the Runge’s function

g(x) = (1 + x2)−1

at equa-spaced nodes in [−5, 5].

◦ The interpolating polynomial seems oscillating more as the
number of nodes increases. The errors at the non-nodal
points do not seem decreasing with the increase of nodes.

◦ Is this a contradiction to the above theorem on polynomial in-
terpolation ? Try to explain the reasons for the phenomenon.

◦ Is this a contradiction to Weierstrass theorem on function
approximation with polynomials ? Try to elaborate your
answer.

◦ Make some comments about polynomial interpolations based
on your investigation with this test function.

◦ Find some other test functions with which polynomial inter-
polations are not effective computationally and numerically.
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Extension/modification of polynomial interpolation

Polynomial interpolation may be extended in many different ways.
One approach is to make a change in variable y.

◦ When yi ≥ 0, one may consider interpolating (xi,
√

yi) in-
stead.

◦ When yi 6= 0, one may consider interpolating (xi, y
−1
i ) in-

stead. This is equivalent to interpolation with rational func-
tion of the form 1/p(x) where p is a polynomial.

This variable change solves the curve fitting problem with
sampled data from Runge’s function.

◦ One may first map y to q(x)y where q is a polynomial with
q(xi) 6= 0. Then interpolate (xi, q(xi)yi) with polynomi-
als. This amounts to interpolation with a rational function
p(x)/q(x).

◦ Find another extension method.
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Interpolations with trigonometric polynomials

We leave this subsection for self-study.

¦ Find at least two approaches for interpolation with trigono-
metric polynomials. Cf. the notes on trigonometric polyno-
mials.

¦ Discuss on the advantages and disadvantages of each ap-
proach.

¦ Discuss on some special cases that make the computation
more efficient.

¦ Estimate interpolation accuracy.

¦ Find a test function with which the interpolation is not ef-
fective.

¦ Find an extension approach that at least improves the test
case.

Interpolation with splines

We consider the case X = [a, b]. In spline interpolation, the
interval [a, b] is partitioned into n smaller subintervals [xi−1, xi]
by n + 1 interpolation nodes xi, i = 0 : n. Here we let the
index start with 0, for convenience. A spline s(x) of degree d is
a piece-wise polynomial in Cd−1, namely,

1. piecewise polynomial

On each [xi−1, xi], S(x) is a polynomial of degree ≤ d,

s(x) = pi−1(x), x ∈ [xi−1, xi], i = 0 : n− 1.
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2. smoothness at the interior nodes

p
(k)
i−1(xi) = p

(k)
i (xi). k = 0 : d− 1

Since s(d) is piecewise constant on [a, b], not necessarily continu-
ous, s(x) is not necessarily a polynomial over [a, b].

A spline interpolant satisfies the interpolating condition

s(xi) = g(xi) = yi, i = 0 : n,

and some additional boundary condition.
A cubic spline interpolant satisfies either the natural boundary

condition
s′(x0) = s(xn) = 0,

or the clamped boundary condition

s′(x0) = g′(x0), s′(xn) = g′(xn).

And the interpolant is correspondingly called the cubic natural
spline or the cubic clamped spline. To determine cubic spline in-
terpolants, it is convenient to represent the piecewise polynomial
in the translated form

pj(x) = αj + βj(x− xj) + γj(x− xj)
2 + δj(x− xj)

3.

Remarks

¦ With a fixed set of n+1 partition nodes the set of natural cu-
bic splines is a subspace of C2[a, b].

¦ Find out the relationship between the set of natural cubic
splines and the set of clamped cubic splines With the same
set of partition nodes.
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¦ Find at least two approaches for interpolation with cubic
splines. And verify that the natural (or clamped) cubic spline
interpolant exists and is unique with distinct interpolation
nodes.

¦ Discuss on the advantages and disadvantages of each ap-
proach.

¦ Discuss on some special cases that make the computation
more efficient.

¦ Except the linear splines (d = 1) and quadratic splines (d =
2), a spline may change globally when the data is locally
changed.

¦ Estimate interpolation accuracy.

¦ Make comparison to interpolation with piecewise Taylor poly-
nomials.

Parametric Interpolation

In parametric interpolation (curve fitting), we treat xi and yi

equally and take them as functions of parameter t at nodes ti.
We introduce the parameter variable t and look for a pair of
interpolating functions of t, [x(t), y(t)], so that

x(ti) = xi, y(ti) = yi, i = 0 : n.

The parameterization includes the special case t = x. There is
flexibility in choosing the range and interpolation nodes of the
parameter. Except when t = x, the following setup is convenient.

t ∈ [0, 1], ti = i/n, i = 0 : n.
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The parameterization does not make interpolation more com-
plicated. In the simplest case, we interpolate (ti, xi) and (ti, yi)
separately as in the earlier discussion. But we have more advan-
tages with parametric interpolation.

¦ It is permissible that the data (xi, yi) have multiple values of
y associated with a single value of x or vice versa.

¦ When both x(t) and y(t) are polynomials, the function y(x),
or x(y), is not necessarily a polynomial.

For example, when x(t) = t3 and y(t) = t, y(x) = x1/3.
Note that this is not included in interpolation by rational
functions.

¦ The subspace for interpolating function x(t) is not necessarily
the same as that for y(t).

¦ The change in variable can be applied to both x and y.

Applications in computer graphics use interpolation with para-
metric piece-wise cubic Hermite polynomials in Bézier represen-
tation. See the homework assignment.
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