SQL

CPS 216
Advanced Database Systems

Review

SELECT [DISTINCT]...
FROM ...

WHERE ...

GROUP BY ...

HAVING ...;

ORDER BY

» SELECT [DISTINCT] E,, E,, E,...
FROM...WHERE...GROUP BY...HAVING...
ORDER BY Eil[ASC | DESC],

Ei2 [ASC | DESC], ...;
» ASC = ascending, DESC = descending

 Operational semantics

— After SELECT list has been computed and optional
duplicate elimination has been carried out,
sort the output according to ORDER BY specification

3

ORDER BY example

« List all students, sort them by GPA (descending)
and then name (ascending)

— ASC is the default option

— Technically, only output columns can appear in
ORDER BY clause (some DBMS support more)

— Can use output index instead

Data modification: INSERT

* Insert one row

Example: Student 456 takes CPS 216

— INSERT INTO Enroll VALUES (456, *CPS 216);
* Insert the result of a query

Example: Force everybody to take CPS 216

— INSERT INTO Enroll
(SELECT SID, 'CPS 216’ FROM Student

Data modification: DELETE

* Delete everything
— DELETE FROM Enroll;
* Delete according to a WHERE condition

Example: Student 456 drops CPS 216
— DELETE FROM Enroll
WHERE SID = 456 AND CID = "CPS 2167;

Example: Drop students with GPA lower than 1.0 from
all CPS classes

Data modification: UPDATE

» Example: Student 142 changes name to “Barney”
— UPDATE Student
SET name = ’Barney’
WHERE SID = 142;
» Example: Let’s be “fair”?
— UPDATE Student
SET GPA = (SELECT AVG(GPA) FROM Student);

Views

» Aview is like a virtual table

— Defined by a query, which describes how to compute
the view contents on the fly

— DBMS stores the view definition query instead of
view contents

— Can be used in queries just like a regular table

Creating and dropping views

» Example: CPS 216 roster

— CREATE VIEW CPS216Roster AS
SELECT SID, name, age, GPA
FROM Student

WHERE SID IN (SELECT SID FROM Enroll
WHERE CID = "CPS 216’);
» To drop a view (or table)
— DROP VIEW view_name;
— DROP TABLE table_name;

Using views in queries

» Example: find the average GPA of CPS 216
students
—SELECT AVG(GPA) FROM CPS216Roster;

—To process the query, replace the reference to
the view by its definition

Why use views?

* To hide data from users
* To hide complexity from users

* Logical data independence

— If applications deal with views, we can change the
underlying schema without affecting applications

— Recall physical data independence: change the
physical organization of data without affecting
applications

« Real database applications use tons of views

Modifying views

» Doesn’t seems to make sense since views are
virtual

» But does make sense if that’s how users view the
database

» Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

A simple case

CREATE VIEW StudentGPA AS
SELECT SID, GPA FROM Student;

DELETE FROM StudentGPA WHERE SID = 123;

translates to:

An impossible case

CREATE VIEW HighGPAStudent AS
SELECT SID, GPA FROM Student
WHERE GPA > 3.7;

INSERT INTO HighGPAStudent
VALUES(987, 2.5);

A case with too many possibilities

CREATE VIEW AverageGPA(GPA) AS
SELECT AVG(GPA) FROM Student;

— Note that you can rename columns in view definition
UPDATE AverageGPA SET GPA = 2.5;

SQL92 updatable views

* Single-table SFW
— No aggregation
— No subqueries

 Overly restrictive

« Still gets it wrong in some cases
— See the slide titled “An impossible case”

Incomplete information

» Example: Student (SID, name, age, GPA)
* Value unknown

* Value not applicable

Solution 1

* A dedicated special value for each domain
— GPA cannot be -1, so use —1 as a special value
— SELECT AVG(GPA) FROM Student;

— SELECT AVG(GPA) FROM Student
WHERE GPA <> 0;
» Complicates applications
— Remember the pre-Y2K bug?
« 09/09/99 was used as an invalid or missing date value
« It’s tricky to make these assumptions!

Solution 2

* A valid-bit column for every real column
— Student (SID, name, name_is_valid,
age, age_is_valid,
GPA, GPA _is_valid)
— Too much overhead

— SELECT AVG(GPA) FROM Student
WHERE GPA _valid;

« Still complicates applications

SQL’s solution

* A special value NULL
— Same for every domain
— Special rules for dealing with NULLs

» Example: Student (SID, name, age, GPA)
- <789, "Nelson’, NULL, NULL>

20

Computing with NULLs

» When we operate on a NULL and another value
(including another NULL) using +, —, etc., the
result is NULL

 Aggregate functions ignore NULL, except
COUNT(*)

21

Three-valued logic

 TRUE =1, FALSE =0, UNKNOWN = 0.5

* X AND y = min(x, y)
X OR y = max(x, y)
NOT(x) =1-x

* When we compare a NULL with another value
(including another NULL) using =, >, etc., the
result is UNKNOWN

* WHERE and HAVING clauses only select tuples
if the condition evaluates to TRUE
— UNKNOWN is insufficient

22

Unfortunate consequences

* select avg(GPA) from Student;
select sum(GPA) / count(*) from Student;

« select * from Student;
select * from Student
where GPA > 3.0 or GPA <= 3.0;

« Be careful: NULL breaks many equivalences

23

Another problem

» Example: Who has NULL GPA values?

— New built-in predicates IS NULL and IS NOT NULL
select * from Student where GPA is null;

2

Recap

Covered

- ORDER BY

— Data modification statements
- Views

- NULLs

Skipped

— Outerjoin

— Alternative join syntax

— Schema modification statements
Next

— Constraints

25

Constraints

Restrictions on allowable data in a database

— In addition to the simple structure and type
restrictions imposed by the table definitions

— Declared as part of the schema
— Enforced by the DBMS

Why use constraints?

— Protect data integrity

— Tell the DBMS about the data

26

Types of constraints

NOT NULL

Key

Referential integrity

General assertion

Tuple- and attribute-based CHECKs

27

NOT NULL constraint example

* create table Student
(SID integer not null,
name varchar(30) not null,
email varchar(30),
age integer, GPA float);
* create table Course
(CID char(10) not null,
title varchar(100) not null);
* create table Enroll
(SID integer not null, CID char(10) not null);

28

Key declaration

» At most one PRIMARY KEY per table
— Typically implies a primary index
— Rows are stored inside the index, typically sorted by
primary key value

« Any number of UNIQUE keys per table

— Typically implies a secondary index
— Pointers to rows are stored inside the index

29

Key declaration examples

* create table Student
(SID integer not null primary key,
name varchar(30) not null, Works on Oracle
email varchar(30) unique, < ___butnot DB2:

age integer, GPA float); Bee Li(i,uﬁir?q':leUE

* create table Course to be NOT NULL
(CID char(10) not null primary key,
title varchar(100) not null);

* create table Enroll
(SID integer not null, CID char(10) not null,
primary key(SID, CID));

30

10

Referential integrity example

— Enroll.SID references Student.SID

— Enroll.CID references Course.SID

— If an SID appears in Enroll, it must appear in Student
— If a CID appears in Enroll, it must appear in Course
— That is, no “dangling pointers”

Student Enroll Course
SID [name SID CID CID title
142 T 142 | CPS 216 T=—#CPS 216 Advanced Data...
123 i el .. | T _142 |[CPS214 % CPS 130|Analysis of Algo...
857 . | 123 CPS 216 CPS 214| Computer Net...
456 | Ralp [857 |CPS216
857 | CPS 130
31

Referential integrity in SQL

 Referenced column must be PRIMARY KEY
* Referencing column is called FOREIGN KEY

» Example declaration

— create table Enroll
(SID integer not null references Student(SID),
CID char(10) not null,
primary key(SID, CID),
foreign key CID references Course(CID));

32

Enforcing referential integrity

Example: Enroll.SID references Student.SID

* Insert or update a Enroll tuple so it refers to a
non-existent SID
- Reject

* Delete or update a Student tuple whose SID is
referenced by some Enroll tuple

— All three options can be specified in SQL

33

11

Deferred constraint checking

 No-chicken-no-egg problem
— create table Dept
(name char(20) not null primary key,
chair char(30) not null references Prof(name));
create table Prof
(name char(30) not null primary key,
dept char(20) not null references Dept(name));

« Deferred constraint checking is necessary
— Check only at the end of a transaction
— Allowed in SQL as an option

34

General assertion

CREATE ASSERTION assertion_name
CHECK assertion_condition;
assertion_condition is checked for each
modification that could potentially violate it

» Example: Enroll.SID references Student.SID

— CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (

);
e SQL3, but not all (perhaps no) DBMS supports it

35

Tuple- and attribute-based CHECKSs

« Associated with a single table

 Only checked when a tuple or an attribute is
inserted or updated

o Example:

— CREATE TABLE Enroll
(SID integer not null
CHECK (SID IN (SELECT SID FROM Student)),
CID ...);

— Is it a referential integrity constraint?

36

12

Next time

Transactions!

37

13

