
1

SQL

CPS 216
Advanced Database Systems

2

Review

SELECT [DISTINCT]…

FROM …

WHERE …

GROUP BY …

HAVING …;

3

ORDER BY
• SELECT [DISTINCT] E1, E2, E3...

FROM…WHERE…GROUP BY…HAVING…
ORDER BY Ei1

[ASC | DESC],
Ei2

[ASC | DESC], …;
• ASC = ascending, DESC = descending
• Operational semantics

– After SELECT list has been computed and optional 
duplicate elimination has been carried out,
sort the output according to ORDER BY specification



2

4

ORDER BY example
• List all students, sort them by GPA (descending) 

and then name (ascending)
–

– ASC is the default option
– Technically, only output columns can appear in 

ORDER BY clause (some DBMS support more)
– Can use output index instead

5

Data modification: INSERT
• Insert one row

Example: Student 456 takes CPS 216
– INSERT INTO Enroll VALUES (456, ’CPS 216’);

• Insert the result of a query
Example: Force everybody to take CPS 216
– INSERT INTO Enroll

(SELECT SID, ’CPS 216’ FROM Student

6

Data modification: DELETE
• Delete everything

– DELETE FROM Enroll;
• Delete according to a WHERE condition

Example: Student 456 drops CPS 216
– DELETE FROM Enroll

WHERE SID = 456 AND CID = ’CPS 216’;
Example: Drop students with GPA lower than 1.0 from 
all CPS classes
–



3

7

Data modification: UPDATE
• Example: Student 142 changes name to “Barney”

– UPDATE Student
SET name = ’Barney’
WHERE SID = 142;

• Example: Let’s be “fair”?
– UPDATE Student

SET GPA = (SELECT AVG(GPA) FROM Student);

8

Views
• A view is like a virtual table

– Defined by a query, which describes how to compute 
the view contents on the fly

– DBMS stores the view definition query instead of 
view contents

– Can be used in queries just like a regular table

9

Creating and dropping views
• Example: CPS 216 roster

– CREATE VIEW CPS216Roster AS
SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = ’CPS 216’);
• To drop a view (or table)

– DROP VIEW view_name;
– DROP TABLE table_name;



4

10

Using views in queries

• Example: find the average GPA of CPS 216 
students
– SELECT AVG(GPA) FROM CPS216Roster;
– To process the query, replace the reference to 

the view by its definition

11

Why use views?
• To hide data from users
• To hide complexity from users
• Logical data independence

– If applications deal with views, we can change the 
underlying schema without affecting applications

– Recall physical data independence: change the 
physical organization of data without affecting 
applications

• Real database applications use tons of views

12

Modifying views
• Doesn’t seems to make sense since views are 

virtual
• But does make sense if that’s how users view the 

database
• Goal: modify the base tables such that the 

modification would appear to have been 
accomplished on the view



5

13

A simple case

CREATE VIEW StudentGPA AS
SELECT SID, GPA FROM Student;

DELETE FROM StudentGPA WHERE SID = 123;

translates to:

14

An impossible case

CREATE VIEW HighGPAStudent AS
SELECT SID, GPA FROM Student
WHERE GPA > 3.7;

INSERT INTO HighGPAStudent
VALUES(987, 2.5);

15

A case with too many possibilities

CREATE VIEW AverageGPA(GPA) AS
SELECT AVG(GPA) FROM Student;
– Note that you can rename columns in view definition

UPDATE AverageGPA SET GPA = 2.5;



6

16

SQL92 updatable views
• Single-table SFW

– No aggregation
– No subqueries

• Overly restrictive
• Still gets it wrong in some cases

– See the slide titled “An impossible case”

17

Incomplete information
• Example: Student (SID, name, age, GPA)

• Value unknown

• Value not applicable

18

Solution 1
• A dedicated special value for each domain

– GPA cannot be –1, so use –1 as a special value
– SELECT AVG(GPA) FROM Student;

– SELECT AVG(GPA) FROM Student
WHERE GPA <> 0;

• Complicates applications
– Remember the pre-Y2K bug?

• 09/09/99 was used as an invalid or missing date value
• It’s tricky to make these assumptions! 



7

19

Solution 2
• A valid-bit column for every real column

– Student (SID, name, name_is_valid,
age, age_is_valid,
GPA, GPA_is_valid)

– Too much overhead
– SELECT AVG(GPA) FROM Student

WHERE GPA_valid;
• Still complicates applications

20

SQL’s solution

• A special value NULL
– Same for every domain
– Special rules for dealing with NULLs

• Example: Student (SID, name, age, GPA)
– <789, ’Nelson’, NULL, NULL>

21

Computing with NULLs

• When we operate on a NULL and another value 
(including another NULL) using +, –, etc., the 
result is NULL

• Aggregate functions ignore NULL, except 
COUNT(*)



8

22

Three-valued logic
• TRUE = 1, FALSE = 0, UNKNOWN = 0.5
• x AND y = min(x, y)

x OR y = max(x, y)
NOT(x) = 1 – x

• When we compare a NULL with another value 
(including another NULL) using =, >, etc., the 
result is UNKNOWN

• WHERE and HAVING clauses only select tuples 
if the condition evaluates to TRUE
– UNKNOWN is insufficient

23

Unfortunate consequences
• select avg(GPA) from Student;

select sum(GPA) / count(*) from Student;

• select * from Student;
select * from Student
where GPA > 3.0 or GPA <= 3.0;

• Be careful: NULL breaks many equivalences

24

Another problem
• Example: Who has NULL GPA values?

– New built-in predicates IS NULL and IS NOT NULL
select * from Student where GPA is null;



9

25

Recap
• Covered

– ORDER BY
– Data modification statements
– Views
– NULLs

• Skipped
– Outerjoin
– Alternative join syntax
– Schema modification statements

• Next
– Constraints

26

Constraints
• Restrictions on allowable data in a database

– In addition to the simple structure and type 
restrictions imposed by the table definitions

– Declared as part of the schema
– Enforced by the DBMS

• Why use constraints?
– Protect data integrity
– Tell the DBMS about the data

27

Types of constraints

• NOT NULL
• Key
• Referential integrity
• General assertion
• Tuple- and attribute-based CHECKs



10

28

NOT NULL constraint example
• create table Student

(SID integer not null,
name varchar(30) not null,
email varchar(30),
age integer, GPA float);

• create table Course
(CID char(10) not null,
title varchar(100) not null);

• create table Enroll
(SID integer not null, CID char(10) not null);

29

Key declaration
• At most one PRIMARY KEY per table

– Typically implies a primary index
– Rows are stored inside the index, typically sorted by 

primary key value
• Any number of UNIQUE keys per table

– Typically implies a secondary index
– Pointers to rows are stored inside the index

30

Key declaration examples
• create table Student

(SID integer not null primary key,
name varchar(30) not null,
email varchar(30) unique,
age integer, GPA float);

• create table Course
(CID char(10) not null primary key,
title varchar(100) not null);

• create table Enroll
(SID integer not null, CID char(10) not null,
primary key(SID, CID));

Works on Oracle
but not DB2:

DB2 requires UNIQUE
key columns

to be NOT NULL



11

31

Referential integrity example
– Enroll.SID references Student.SID
– Enroll.CID references Course.SID
– If an SID appears in Enroll, it must appear in Student
– If a CID appears in Enroll, it must appear in Course
– That is, no “dangling pointers”

SID CID
142 CPS 216
142 CPS 214
123 CPS 216
857 CPS 216
857 CPS 130
... ...

Enroll
CID title

CPS 216 Advanced Data…
CPS 130 Analysis of Algo…
CPS 214 Computer Net…

... ...

Course
SID name …
142 Bart …
123 Milhouse …
857 Lisa …
456 Ralph …
... ... ...

Student

32

Referential integrity in SQL
• Referenced column must be PRIMARY KEY
• Referencing column is called FOREIGN KEY
• Example declaration

– create table Enroll
(SID integer not null references Student(SID),
CID char(10) not null,
primary key(SID, CID),
foreign key CID references Course(CID));

33

Enforcing referential integrity
Example: Enroll.SID references Student.SID
• Insert or update a Enroll tuple so it refers to a 

non-existent SID
– Reject

• Delete or update a Student tuple whose SID is 
referenced by some Enroll tuple

– All three options can be specified in SQL



12

34

Deferred constraint checking
• No-chicken-no-egg problem

– create table Dept
(name char(20) not null primary key,
chair char(30) not null references Prof(name));

create table Prof
(name char(30) not null primary key,
dept char(20) not null references Dept(name));

• Deferred constraint checking is necessary
– Check only at the end of a transaction
– Allowed in SQL as an option

35

General assertion
• CREATE ASSERTION assertion_name

CHECK assertion_condition;
• assertion_condition is checked for each 

modification that could potentially violate it
• Example: Enroll.SID references Student.SID

– CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (

);

• SQL3, but not all (perhaps no) DBMS supports it

36

Tuple- and attribute-based CHECKs
• Associated with a single table
• Only checked when a tuple or an attribute is 

inserted or updated
• Example:

– CREATE TABLE Enroll
(SID integer not null

CHECK (SID IN (SELECT SID FROM Student)),
CID …);

– Is it a referential integrity constraint?



13

37

Next time

Transactions!


