
1

SQL

CPS 216
Advanced Database Systems

2

Review

SELECT [DISTINCT]…

FROM …

WHERE …

GROUP BY …

HAVING …;

Step 1. ×

Step 2. σ

Step 3. Grouping

Step 4. Another σ

Step 5. π

3

ORDER BY
• SELECT [DISTINCT] E1, E2, E3...

FROM…WHERE…GROUP BY…HAVING…
ORDER BY Ei1

[ASC | DESC],
Ei2

[ASC | DESC], …;
• ASC = ascending, DESC = descending
• Operational semantics

– After SELECT list has been computed and optional
duplicate elimination has been carried out,
sort the output according to ORDER BY specification

4

ORDER BY example
• List all students, sort them by GPA (descending)

and then name (ascending)
– SELECT SID, name, age, GPA

FROM Student
ORDER BY GPA DESC, name;

– ASC is the default option
– Technically, only output columns can appear in

ORDER BY clause (some DBMS support more)
– Can use output index instead

ORDER BY 4 DESC, 2;

5

Data modification: INSERT
• Insert one row

Example: Student 456 takes CPS 216
– INSERT INTO Enroll VALUES (456, ’CPS 216’);

• Insert the result of a query
Example: Force everybody to take CPS 216
– INSERT INTO Enroll

(SELECT SID, ’CPS 216’ FROM Student
WHERE SID NOT IN (SELECT SID FROM Enroll

WHERE CID = ’CPS 216’));

6

Data modification: DELETE
• Delete everything

– DELETE FROM Enroll;
• Delete according to a WHERE condition

Example: Student 456 drops CPS 216
– DELETE FROM Enroll

WHERE SID = 456 AND CID = ’CPS 216’;
Example: Drop students with GPA lower than 1.0 from
all CPS classes
– DELETE FROM Enroll

WHERE SID IN (SELECT SID FROM Student
WHERE GPA < 1.0)

AND CID LIKE ’CPS%’;

2

7

Data modification: UPDATE
• Example: Student 142 changes name to “Barney”

– UPDATE Student
SET name = ’Barney’
WHERE SID = 142;

• Example: Let’s be “fair”?
– UPDATE Student

SET GPA = (SELECT AVG(GPA) FROM Student);
– Update of every row causes average GPA to change
– Average GPA is computed over the old Student table

8

Views
• A view is like a virtual table

– Defined by a query, which describes how to compute
the view contents on the fly

– DBMS stores the view definition query instead of
view contents

– Can be used in queries just like a regular table

9

Creating and dropping views
• Example: CPS 216 roster

– CREATE VIEW CPS216Roster AS
SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = ’CPS 216’);
• To drop a view (or table)

– DROP VIEW view_name;
– DROP TABLE table_name;

10

Using views in queries
• Example: find the average GPA of CPS 216

students
– SELECT AVG(GPA) FROM CPS216Roster;
– To process the query, replace the reference to the

view by its definition
– SELECT AVG(GPA)

FROM (SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID

FROM Enroll
WHERE CID = ’CPS 216’));

11

Why use views?
• To hide data from users
• To hide complexity from users
• Logical data independence

– If applications deal with views, we can change the
underlying schema without affecting applications

– Recall physical data independence: change the
physical organization of data without affecting
applications

• Real database applications use tons of views
12

Modifying views
• Doesn’t seems to make sense since views are

virtual
• But does make sense if that’s how users view the

database
• Goal: modify the base tables such that the

modification would appear to have been
accomplished on the view

3

13

A simple case

CREATE VIEW StudentGPA AS
SELECT SID, GPA FROM Student;

DELETE FROM StudentGPA WHERE SID = 123;

translates to:

DELETE FROM Student WHERE SID = 123;

14

An impossible case

CREATE VIEW HighGPAStudent AS
SELECT SID, GPA FROM Student
WHERE GPA > 3.7;

INSERT INTO HighGPAStudent
VALUES(987, 2.5);

• No matter what you do on the student table,
the inserted tuple won’t be in HighGPAStudent

15

A case with too many possibilities

CREATE VIEW AverageGPA(GPA) AS
SELECT AVG(GPA) FROM Student;
– Note that you can rename columns in view definition

UPDATE AverageGPA SET GPA = 2.5;
• Set everybody’s GPA to 2.5?
• Adjust everybody’s GPA by the same amount?
• Just lower Bart’s GPA?

16

SQL92 updatable views
• Single-table SFW

– No aggregation
– No subqueries

• Overly restrictive
• Still gets it wrong in some cases

– See the slide titled “An impossible case”

17

Incomplete information
• Example: Student (SID, name, age, GPA)

• Value unknown
– We don’t know Nelson’s age

• Value not applicable
– Nelson hasn’t taken any classes yet; what’s his GPA?

18

Solution 1
• A dedicated special value for each domain

– GPA cannot be –1, so use –1 as a special value
– SELECT AVG(GPA) FROM Student;

• Oh no, it’s lower than I expected!
– SELECT AVG(GPA) FROM Student

WHERE GPA <> –1;
• Complicates applications

– Remember the pre-Y2K bug?
• 09/09/99 was used as an invalid or missing date value
• It’s tricky to make these assumptions!

4

19

Solution 2
• A valid-bit column for every real column

– Student (SID, name, name_is_valid,
age, age_is_valid,
GPA, GPA_is_valid)

– Too much overhead
– SELECT AVG(GPA) FROM Student

WHERE GPA_valid;
• Still complicates applications

20

SQL’s solution

• A special value NULL
– Same for every domain
– Special rules for dealing with NULLs

• Example: Student (SID, name, age, GPA)
– <789, ’Nelson’, NULL, NULL>

21

Computing with NULLs

• When we operate on a NULL and another value
(including another NULL) using +, –, etc., the
result is NULL

• Aggregate functions ignore NULL, except
COUNT(*)

22

Three-valued logic
• TRUE = 1, FALSE = 0, UNKNOWN = 0.5
• x AND y = min(x, y)

x OR y = max(x, y)
NOT(x) = 1 – x

• When we compare a NULL with another value
(including another NULL) using =, >, etc., the
result is UNKNOWN

• WHERE and HAVING clauses only select tuples
if the condition evaluates to TRUE
– UNKNOWN is insufficient

23

Unfortunate consequences
• select avg(GPA) from Student;

select sum(GPA) / count(*) from Student;
– Not equivalent
– avg(GPA) = sum(GPA) / count(GPA) still holds

• select * from Student;
select * from Student
where GPA > 3.0 or GPA <= 3.0;
– Not equivalent

• Be careful: NULL breaks many equivalences
24

Another problem
• Example: Who has NULL GPA values?

– select * from Student where GPA = NULL;
• Won’t work; never returns anything!

– (select * from Student) except all
(select * from Student where GPA = 0 OR GPA<>0);

• Ugly!
– New built-in predicates IS NULL and IS NOT NULL

select * from Student where GPA is null;

5

25

Recap
• Covered

– ORDER BY
– Data modification statements
– Views
– NULLs

• Skipped
– Outerjoin
– Alternative join syntax
– Schema modification statements

• Next
– Constraints 26

Constraints
• Restrictions on allowable data in a database

– In addition to the simple structure and type
restrictions imposed by the table definitions

– Declared as part of the schema
– Enforced by the DBMS

• Why use constraints?
– Protect data integrity (catch errors)
– Tell the DBMS about the data (so it can optimize

better)

27

Types of constraints

• NOT NULL
• Key
• Referential integrity
• General assertion
• Tuple- and attribute-based CHECKs

28

NOT NULL constraint example
• create table Student

(SID integer not null,
name varchar(30) not null,
email varchar(30),
age integer, GPA float);

• create table Course
(CID char(10) not null,
title varchar(100) not null);

• create table Enroll
(SID integer not null, CID char(10) not null);

29

Key declaration
• At most one PRIMARY KEY per table

– Typically implies a primary index
– Rows are stored inside the index, typically sorted by

primary key value
• Any number of UNIQUE keys per table

– Typically implies a secondary index
– Pointers to rows are stored inside the index

30

Key declaration examples
• create table Student

(SID integer not null primary key,
name varchar(30) not null,
email varchar(30) unique,
age integer, GPA float);

• create table Course
(CID char(10) not null primary key,
title varchar(100) not null);

• create table Enroll
(SID integer not null, CID char(10) not null,
primary key(SID, CID));

Works on Oracle
but not DB2:

DB2 requires UNIQUE
key columns

to be NOT NULL

6

31

Referential integrity example
– Enroll.SID references Student.SID
– Enroll.CID references Course.CID
– If an SID appears in Enroll, it must appear in Student
– If a CID appears in Enroll, it must appear in Course
– That is, no “dangling pointers”

SID CID
142 CPS 216
142 CPS 214
123 CPS 216
857 CPS 216
857 CPS 130
... ...

Enroll
CID title

CPS 216 Advanced Data…
CPS 130 Analysis of Algo…
CPS 214 Computer Net…

... ...

Course
SID name …
142 Bart …
123 Milhouse …
857 Lisa …
456 Ralph …
...

Student

32

Referential integrity in SQL
• Referenced column must be PRIMARY KEY
• Referencing column is called FOREIGN KEY
• Example declaration

– create table Enroll
(SID integer not null references Student(SID),
CID char(10) not null,
primary key(SID, CID),
foreign key CID references Course(CID));

33

Enforcing referential integrity
Example: Enroll.SID references Student.SID
• Insert or update a Enroll tuple so it refers to a

non-existent SID
– Reject

• Delete or update a Student tuple whose SID is
referenced by some Enroll tuple
– Reject
– Cascade: ripple changes to all referring tuples
– Set NULL: set all references to NULL
– All three options can be specified in SQL

34

Deferred constraint checking
• No-chicken-no-egg problem

– create table Dept
(name char(20) not null primary key,
chair char(30) not null references Prof(name));

create table Prof
(name char(30) not null primary key,
dept char(20) not null references Dept(name));

– The first INSERT will always violate a constraint
• Deferred constraint checking is necessary

– Check only at the end of a transaction
– Allowed in SQL as an option

35

General assertion
• CREATE ASSERTION assertion_name

CHECK assertion_condition;
• assertion_condition is checked for each

modification that could potentially violate it
• Example: Enroll.SID references Student.SID

– CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (NOT EXISTS

(SELECT * FROM Enroll
WHERE SID NOT IN

(SELECT SID FROM Student)));

• SQL3, but not all (perhaps no) DBMS supports it
36

Tuple- and attribute-based CHECKs
• Associated with a single table
• Only checked when a tuple or an attribute is

inserted or updated
• Example:

– CREATE TABLE Enroll
(SID integer not null

CHECK (SID IN (SELECT SID FROM Student)),
CID …);

– Is it a referential integrity constraint?
– Not quite; not checked when Student is modified

7

37

Next time

Transactions!

