
1

Physical Data Organization

CPS 216
Advanced Database Systems

2

Outline

• It’s all about disks

– That’s why you always draw a database as

• Record layout

• Block layout

3

Storage hierarchy
Registers

Cache

Memory

Disk

Tapes

2

4

How far away is data?
Location Cycles
Registers 1
On-chip cache 2
On-board cache 10
Memory 100
Disk 106

Tape 109

(Source: AlphaSort paper, 1995)

5

A typical disk

Platter

Platter

Spindle

Spindle rotation

Platter

Tracks

Arm movement

Disk arm
Disk head

Cylinders

6

Top view

Track
Track
Track

Sectors

Higher-density sectors on inner tracks
and/or more sectors
on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors

3

7

Disk access time
Sum of:
• Seek time: time for disk heads to move to the

correct cylinder
• Rotational delay: time for the desired block to

rotate under the disk head
• Transfer time: time to read/write data in the block

(= time for disk to rotate over the block)

8

Random disk access
Seek time + rotational delay + transfer time
• Average seek time

– “Typical” value: 5 ms
• Average rotational delay

– “Typical” value: 4.2 ms (7200 RPM)

9

Sequential disk access
Seek time + rotational delay + transfer time
• Seek time

– (assuming data is on the same track)
• Rotational delay

– (assuming data is in the next block on the track)
• Easily an order of magnitude faster than random

disk access!

4

10

Data layout strategy
Keep related things close together!
• Same sector/block
• Same track
• Same cylinder
• Adjacent cylinder

11

More performance tricks
• Disk scheduling algorithm

– Example: “elevator” algorithm
• Track buffer

– Read/write one entire track at a time
• Double buffering

– While processing the current block in memory,
prefetch the next block from disk

• Parallel I/O
– More disk heads working at the same time

12

Record layout
Record = row in a table
• Variable-format records

– Rare in DBMS—table schema dictates the format
– Maybe relevant for semi-structured data such as XML

• Focus on fixed-format records
– With fixed-length fields only, or
– With possible variable-length fields

5

13

Fixed-length fields
• All field lengths and offsets are constant

– Computed from schema, stored in the system catalog
• Example: create table Student(SID integer, name CHAR(20),

age integer, GPA float)

142
0 4

Bart (padded with ‘\0’)
24

10 2.3
28 36

• Watch out for alignment!

• What about NULL?

14

Variable-length fields
• Example: create table Student

(SID integer, name VARCHAR(20), age integer, GPA float,
comment VARCHAR(100))

• Approach 1: use field delimiters

142
0 4

Bart\010 2.3
8 16

Weird kid!\0

• Approach 2: use an offset array

142
0 4

Bart10 2.3
8 16

Weird kid!
18 22 32

22 32
• Update is messy if it changes the length of a field

15

LOB fields
• Example: create table Student(SID integer, name CHAR(20),

age integer, GPA float, picture BLOB(32000))

• Student records get “de-clustered”
– Bad because most queries do not involve picture

• Decompose (automatically done by DBMS)
– Student(SID, name, age, GPA)
– StudentPicture(SID, picture)

6

16

Block layout
How do you organize records in a block?
• NSM (N-ary Storage Model)

– Most commercial DBMS
• DSM (Decomposition Storage Model)
• PAX (Partition Attributes Across)

– Recent work (Ailamaki et al., VLDB 2001)

17

NSM
• Store records from the beginning of each block
• Use a directory at the end of each block

– To locate records and manage free space
– Necessary for variable-length records

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3
857 Lisa 8 4.3

18

Options
• Reorganize after every update/delete to avoid

fragmentation

• What if records are fixed-length?
– Reorganize after delete

– Do not reorganize after update

7

19

Cache behavior of NSM
• Query: SELECT SID FROM Student WHERE GPA > 2.0;

• Assumption: cache block size < record size

142 Bart 10142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3
857 Lisa 8 4.3 2.3 123 Milhouse

10 3.1 857 Lisa
8 4.3
456 Ralph 8

Cache
2.3

• Lots of cache misses!
– Things are not close enough (by memory standard)

20

Do cache misses matter in DBMS?
• Yes? Percentage of memory-related stall time due

to data cache misses:
– 90% for OLAP workloads

(lots of large, complex queries; few updates)
– 50-70% for OLTP workloads

(lots of small queries and updates)

• No? Compared to disk I/Os, memory-related stall
time is nothing

21

DSM
• Decompose table into smaller ones

– StudentName(SID, name)
– StudentAge(SID, age)
– StudentGPA(SID, GPA)

• Each small table uses NSM

142 Bart 123 Milhouse
857 Lisa

456 Ralph

142 10 123 10 857 8 456 8 142 2.3 123 3.1 857 4.3 456 2.3

8

22

Pros and cons of DSM
Pros
•
•

Cons
•

•

23

PAX
• Keep entire rows in a block

–
• Within a block, cluster columns

–

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

(IS NOT NULL bitmap)

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

24

PAX versus NSM
• Space requirement

– Roughly the same
• Cache performance

– PAX incurs 75% less data cache misses than NSM
• Overall performance

– For OLAP, PAX is 11-48% faster
– For OLTP

• Updates: PAX is 10%-16% faster (assuming NSM
reorganizes as well)

• Queries (typically very selective): I/O still dominates?

9

25

Next time

Indexing

