Query Optimization

CPS 216
Advanced Database Systems

Wavelets

» Mathematical tool for hierarchical decomposition of
functions and signals
» Haar wavelets: recursive pair-wise averaging and
differencing at different resolutions

— Simplest wavelet basis, easy to implement

Resolution Averages Detail coefficients
3 (2,2,0,2,3,5,4,4]
2 2, 1, 4, 4] 0,-1,-1, 0]

[
1 [1.5 4 [0.5, 0]
0 [1275] [-1.25]

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]

2

Haar wavelet coefficients

* Hierarchical decomposition structure

Lol [l [] [o]
TY7YTVTE

2 5 4
N—

—~
Original data 3

Wavelet-based histogram

« Idea: use a compact subset of wavelet coefficients to
approximate the data distribution (Matias et al.,
SIGMOD 1998)

— The function to transform is the distribution function which
maps v; to f;
» Steps
— Compute cumulative data distribution function C(v)
« C(v) is the number of tuples with R4 <v
— Compute wavelet transform of C

— Coefficient thresholding: keep only the largest coefficients in
absolute normalized value

« For Haar wavelets, divide coefficients at resolution j by 2 (/2 4

Using a wavelet-based histogram

* Q105 apasv R
* [Q9]=C0) - Cw
* Search the tree to reconstruct C(v) and C(u)

— Worst case: two paths, O(log N), where N is the size
of the domain

— If we just store B coefficients, it becomes O(B), but
answers are now approximate

* What about Q: o,_, R?

—Same as 6~ _j anpas<y R

Summary of histograms

* Wavelet-based histograms are shown to work
better than traditional bucket-based histograms

* The trick of using cumulative distribution for
range query estimation also works for bucket-
based histograms

* Trade-off: better accuracy <> bigger size; higher
construction and maintenance costs

6

Cost-based query optimization

¢ Review

— Algorithms for physical plan operators (sorting, hashing,
indexing, ...)

— Query execution techniques (buffer management, pipelining
using the iterator interface...)

— Query rewrite techniques (relational algebra equivalences,
unnesting, decorrelating SQL queries...)

— Cost estimation techniques (I/O analysis of algorithms,
histograms...)
* Mission: searching for an “optimal” plan

— Focus on select-project-join query blocks
« Join ordering is the most important subproblem 7

Search space
* “Bushy” plan example: /D <1\

PaUAN
R RE N
R, Rs
* How many plans are there for R, >< ... ><R,?
— Lots (30240 for n=6)

* There are more!
— How about multiway joins?
— How about different join methods?

— How about placement of selection and projection?
8

* Heuristic: consider only “left-deep” plans, wherein only
the left child can be a join

— Tend to be better than plans of other shapes

* Many join algorithms scan inner (right) relation multiple times—you
will not want it to be a complex subtree

* How many left-deep plans are there for R, >< ... ><R,?
— Significantly fewer, but still lots—n! (720 for n=6)

9

A greedy algorithm

* SL S,
— Say selections have been pushed down; i.e., S;= g, R;

* Start with the pair S, S; with the smallest estimated size
for S, >< S

* Repeat until no relation is left:
Pick S; from the remaining relations such that the join of
S; and the current result yields an intermediate result of

the smallest size
Pick most efficient join method

Remaining
Minimize expected sizg rel.at.lons
to be joined

Current subplan
10

Query optimization in System R

» Ak.a. Selinger-style query optimization

— The classic paper on query optimization (Selinger et
al., SIGMOD 1979)

* Basic ideas
— Left-deep trees only
— Bottom-up generation of plans
— Interesting orders

Bottom-up plan generation

* Observation 1: Once we have joined k relations together,
the method of joining this result further with another
relation is independent of the previous join methods

* Observation 2: Any subplan of an optimal plan must also
be optimal (otherwise we could replace the subplan to
get a better overall plan)

» Not exactly accurate (next slide)

* Bottom-up generation of optimal plans

— Compute the optimal plans for joining & relations together
« Suboptimal plans are pruned

— From these plans, derive the optimal plans for joining i+1
relations together

otivation for “interesting order
Motivat for “int t der”

Example: R(4, B) >< S(4, C) >< T(4, D)

* Best plan for R >< S: hash join (beats sort-merge join)

* Best overall plan: sort-merge join R and S, and then sort-
merge join with 7'
— Subplan of the optimal plan is not optimal!

¢ Why?
— The result of the sort-merge join of R and S is sorted on 4

— This is an interesting order that can be exploited by later
processing (e.g., join, duplicate elimination, GROUP BY,
ORDER BY, etc.)!

Dealing with interesting orders

* When picking the optimal plan
— Comparing their costs is not enough
« Plans are not totally ordered by cost anymore
— Comparing interesting orders is also needed
« Plans are now partially ordered

 Plan X is better than plan Y if
— Cost of X'is lower than ¥
— Interesting orders produced by X subsume those produced by ¥

» Need to keep a set of optimal plans for joining
every combination of k relations
— Typically one for each interesting order

System-R algorithm

 Pass 1: Find the best single-relation plans

 Pass 2: Find the best two-relation plans by considering
each single-relation plan (from Pass 1) as the outer
relation and every other relation as the inner relation

* Pass £: Find the best k-relation plans by considering each
(k—1)-relation plan (from Pass k—1) as the outer relation
and every other relation as the inner relation

 Heuristics
— Push selections and projections down
— Process cross products at the end

Reasoning about predicates

SELECT * FROMR, S, T

WHERE R.4=S.4 AND S.4=T.4,

Looks like a cross product between R and T

— No join condition

But there is really a join between R and T'

— R.A=T.A is implied from the other two predicates

A good optimizer should be able to detect this
case and consider the possibility of joining R with
T first

16

.

3

System-R algorithm example

SELECT SID, CID

FROM Student, Enroll, Course
WHERE Student.age < 10

AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ’%data%’;

Primary keys/indexes
— Student(SID), Enroll(CID, SID), Course(CID)

Ordered, secondary indexes
— Student(age), Course(title)

Example: pass 1

Plans for {Student}

— S1: Table scan, then filter (age < 10);
cost 100; result ordered by SID

— S2: Index scan using condition (age < 10);
cost 5; result ordered by age

Plans for {Enroll}

— El: Table scan;
cost 1000; result ordered by CID, SID

Plans for {Course}

— C1: Table scan, then filter (title LIKE *%data%"’);
cost 40; result ordered by CID

— C2: Index scan, then filter (title LIKE ’%data%’);
cost 160; result ordered by title 0

Example: pass 2

* Plans for {Student, Enroll}

— Extending best plans for {Student}

« From S1: table scan, then filter (name = "Bart’)
— Block-based nested loop join with Enroll; cost 1100

— Sort Enroll by SID, and merge join; cost 3100;
ordered by SID

« From S2: index scan using condition (name = ’Bart’)
— Block-based nested loop join with Enroll; cost 1005

Example: pass 2 continued

* Plans for {Student, Course}
— Ignore; it is a cross product
* Plans for {Enroll, Course}

— Extending best plans for {Course}

« From C1: table scan, then filter (title LIKE *%data%")
@ Merge join; cost 1040

20

Example: pass 3

* Finally, plans for {Student, Enroll, Course}

— Extending best plans for {Student, Enroll}

®. (INDEX-SCAN(Student) NLJ Enroll) NLJ
FILTER(Course); cost ...

— Extending best plans for {Student, Course}
* None!
— Extending best plans for {Enroll, Course}

 (FILTER(Course) SMJ Enroll) NLJ (INDEX-
SCAN(Student)); cost ...

...... 2

Considering bushy plans

Straightforward generalization:

* Store all optimal 1-relation, 2-relation, ..., and k-
relation plans

* To find the optimal plan for k+1 relations

— For every possible partition of these relations into two
groups, find the best ways of joining the optimal plans
for the two groups

— Store the overall optimal plans

22

Optimizer “blow-up”

* A 20-way join will easily choke an optimizer
using the System-R algorithm

* Solutions
— Heuristics-based query optimization

— Randomized query optimization (Ioannidis & Kang,
SIGMOD 1990)

23

Search space revisited

Cost

- - .
Transformations

Space of plans

Local optimum
Global optimum

24

Transformations

Relational algebra equivalences
(or query rewrite rules in general):

* Join method choice: R >< 0415 = R > <petmodd
 Join commutativity: R ><.S — S>< R

* Join associativity: (R><8)><1T— R><(S><T)

+ Left join exchange: (R><S)>< T — R><a1(T><S)
* Right join exchange: R >< (S><T) —> S (R>< 1)
* Why the last two redundant rules?

— To avoid using the join commutativity rule, which does not
change the cost of certain plans (e.g., sort-merge join)—
creating plateaus in the plan space

25

[terative improvement

* Repeat until some stopping condition (e.g., time
runs out):
— Start with a random plan

— Repeatedly go downhill (i.e., pick a neighbor with a
lower cost randomly) to get to a local optimum

* Return the smallest local optimum found

26

Simulated annealing

* Start with a plan and an initial temperature
* Repeat until temperature is 0:
Repeat until some equilibrium (e.g., a fixed
number of iterations):

— Move to a random neighbor of the plan (an uphill
move is allowed with probability e —Acost/temperature)

— Reduce temperature

* Return the plan visited with the lowest cost

27

Two-phase optimization

* Phase [: run iterative improvement for a while to
find a good local optimum

* Phase II: run simulated annealing with a low
initial temperature to get more improvements

* Why does it tend to work better than both
iterative improvement and simulated annealing?

28

Shape of the cost function

Cost * An average local optimum has
a much lower cost than an
average plan

» The average distance between
a random state and a local

Cup-shaped optimum is long
* There are lots of local optima
* Many local optima are
connected together through
low-cost plans within short
Space of plans

distances -

Comparison of randomized algorithms

* [terative improvement
— Too easily trapped in a local optimum
— Too much work to restart
» Simulated annealing
— Too much time spent on high-cost plans
* Two-phase
— Phase I uses iterative improvement to get to the cup
bottom quickly
— Phase II uses simulated annealing to explore the cup
bottom further 30

10

