Query Optimization

CPS 216
Advanced Database Systems

Wavelets

» Mathematical tool for hierarchical decomposition of
functions and signals
» Haar wavelets: recursive pair-wise averaging and
differencing at different resolutions

— Simplest wavelet basis, easy to implement
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Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]
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Haar wavelet coefficients

* Hierarchical decomposition structure
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Wavelet-based histogram

« Idea: use a compact subset of wavelet coefficients to
approximate the data distribution (Matias et al.,
SIGMOD 1998)

— The function to transform is the distribution function which
maps v; to f;
» Steps
— Compute cumulative data distribution function C(v)
« C(v) is the number of tuples with R4 <v
— Compute wavelet transform of C

— Coefficient thresholding: keep only the largest coefficients in
absolute normalized value

« For Haar wavelets, divide coefficients at resolution j by 2 (/2 4

Using a wavelet-based histogram

* Q105 apasv R
* [Q9]=C0) - Cw
* Search the tree to reconstruct C(v) and C(u)

— Worst case: two paths, O(log N), where N is the size
of the domain

— If we just store B coefficients, it becomes O(B), but
answers are now approximate

* What about Q: o,_, R?

—Same as 6~ _j anpas<y R

Summary of histograms

* Wavelet-based histograms are shown to work
better than traditional bucket-based histograms

* The trick of using cumulative distribution for
range query estimation also works for bucket-
based histograms

* Trade-off: better accuracy <> bigger size; higher
construction and maintenance costs
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Cost-based query optimization

¢ Review

— Algorithms for physical plan operators (sorting, hashing,
indexing, ...)

— Query execution techniques (buffer management, pipelining
using the iterator interface...)

— Query rewrite techniques (relational algebra equivalences,
unnesting, decorrelating SQL queries...)

— Cost estimation techniques (I/O analysis of algorithms,
histograms...)
* Mission: searching for an “optimal” plan

— Focus on select-project-join query blocks
« Join ordering is the most important subproblem 7

Search space
* “Bushy” plan example: /D <1\
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* How many plans are there for R, >< ... ><R,?
— Lots (30240 for n=6)

* There are more!
— How about multiway joins?
— How about different join methods?

— How about placement of selection and projection?
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* Heuristic: consider only “left-deep” plans, wherein only
the left child can be a join

— Tend to be better than plans of other shapes

* Many join algorithms scan inner (right) relation multiple times—you
will not want it to be a complex subtree

* How many left-deep plans are there for R, >< ... ><R,?
— Significantly fewer, but still lots—n! (720 for n=6)

9




A greedy algorithm

* SL S,
— Say selections have been pushed down; i.e., S;= g, R;

* Start with the pair S, S; with the smallest estimated size
for S, >< S

* Repeat until no relation is left:
Pick S; from the remaining relations such that the join of
S; and the current result yields an intermediate result of

the smallest size
Pick most efficient join method

Remaining
Minimize expected sizg rel.at.lons
to be joined

Current subplan
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Query optimization in System R

» Ak.a. Selinger-style query optimization

— The classic paper on query optimization (Selinger et
al., SIGMOD 1979)

* Basic ideas
— Left-deep trees only
— Bottom-up generation of plans
— Interesting orders

Bottom-up plan generation

* Observation 1: Once we have joined k relations together,
the method of joining this result further with another
relation is independent of the previous join methods

* Observation 2: Any subplan of an optimal plan must also
be optimal (otherwise we could replace the subplan to
get a better overall plan)

» Not exactly accurate (next slide)

* Bottom-up generation of optimal plans

— Compute the optimal plans for joining & relations together
« Suboptimal plans are pruned

— From these plans, derive the optimal plans for joining i+1
relations together




otivation for “interesting order
Motivat for “int t der”

Example: R(4, B) >< S(4, C) >< T(4, D)

* Best plan for R >< S: hash join (beats sort-merge join)

* Best overall plan: sort-merge join R and S, and then sort-
merge join with 7'
— Subplan of the optimal plan is not optimal!

¢ Why?
— The result of the sort-merge join of R and S is sorted on 4

— This is an interesting order that can be exploited by later
processing (e.g., join, duplicate elimination, GROUP BY,
ORDER BY, etc.)!

Dealing with interesting orders

* When picking the optimal plan
— Comparing their costs is not enough
« Plans are not totally ordered by cost anymore
— Comparing interesting orders is also needed
« Plans are now partially ordered

 Plan X is better than plan Y if
— Cost of X'is lower than ¥
— Interesting orders produced by X subsume those produced by ¥

» Need to keep a set of optimal plans for joining
every combination of k relations
— Typically one for each interesting order

System-R algorithm

 Pass 1: Find the best single-relation plans

 Pass 2: Find the best two-relation plans by considering
each single-relation plan (from Pass 1) as the outer
relation and every other relation as the inner relation

* Pass £: Find the best k-relation plans by considering each
(k—1)-relation plan (from Pass k—1) as the outer relation
and every other relation as the inner relation

 Heuristics
— Push selections and projections down
— Process cross products at the end




Reasoning about predicates

SELECT * FROMR, S, T

WHERE R.4=S.4 AND S.4=T.4,

Looks like a cross product between R and T

— No join condition

But there is really a join between R and T'

— R.A=T.A is implied from the other two predicates

A good optimizer should be able to detect this
case and consider the possibility of joining R with
T first
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System-R algorithm example

SELECT SID, CID

FROM Student, Enroll, Course
WHERE Student.age < 10

AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ’%data%’;

Primary keys/indexes
— Student(SID), Enroll(CID, SID), Course(CID)

Ordered, secondary indexes
— Student(age), Course(title)

Example: pass 1

Plans for {Student}

— S1: Table scan, then filter (age < 10);
cost 100; result ordered by SID

— S2: Index scan using condition (age < 10);
cost 5; result ordered by age

Plans for {Enroll}

— El: Table scan;
cost 1000; result ordered by CID, SID

Plans for {Course}

— C1: Table scan, then filter (title LIKE *%data%"’);
cost 40; result ordered by CID

— C2: Index scan, then filter (title LIKE ’%data%’);
cost 160; result ordered by title 0




Example: pass 2

* Plans for {Student, Enroll}

— Extending best plans for {Student}

« From S1: table scan, then filter (name = "Bart’)
— Block-based nested loop join with Enroll; cost 1100

— Sort Enroll by SID, and merge join; cost 3100;
ordered by SID

« From S2: index scan using condition (name = ’Bart’)
— Block-based nested loop join with Enroll; cost 1005

Example: pass 2 continued

* Plans for {Student, Course}
— Ignore; it is a cross product
* Plans for {Enroll, Course}

— Extending best plans for {Course}

« From C1: table scan, then filter (title LIKE *%data%")
@ Merge join; cost 1040
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Example: pass 3

* Finally, plans for {Student, Enroll, Course}

— Extending best plans for {Student, Enroll}

®. (INDEX-SCAN(Student) NLJ Enroll) NLJ
FILTER(Course); cost ...

— Extending best plans for {Student, Course}
* None!
— Extending best plans for {Enroll, Course}

 (FILTER(Course) SMJ Enroll) NLJ (INDEX-
SCAN(Student)); cost ...

...... 2




Considering bushy plans

Straightforward generalization:

* Store all optimal 1-relation, 2-relation, ..., and k-
relation plans

* To find the optimal plan for k+1 relations

— For every possible partition of these relations into two
groups, find the best ways of joining the optimal plans
for the two groups

— Store the overall optimal plans
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Optimizer “blow-up”

* A 20-way join will easily choke an optimizer
using the System-R algorithm

* Solutions
— Heuristics-based query optimization

— Randomized query optimization (Ioannidis & Kang,
SIGMOD 1990)
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Search space revisited

Cost

- - .
Transformations

Space of plans

Local optimum
Global optimum
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Transformations

Relational algebra equivalences
(or query rewrite rules in general):

* Join method choice: R >< 0415 = R > <petmodd
 Join commutativity: R ><.S — S>< R

* Join associativity: (R><8)><1T— R><(S><T)

+ Left join exchange: (R><S)>< T — R><a1(T><S)
* Right join exchange: R >< (S><T) —> S (R>< 1)
* Why the last two redundant rules?

— To avoid using the join commutativity rule, which does not
change the cost of certain plans (e.g., sort-merge join)—
creating plateaus in the plan space
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[terative improvement

* Repeat until some stopping condition (e.g., time
runs out):
— Start with a random plan

— Repeatedly go downhill (i.e., pick a neighbor with a
lower cost randomly) to get to a local optimum

* Return the smallest local optimum found
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Simulated annealing

* Start with a plan and an initial temperature
* Repeat until temperature is 0:
Repeat until some equilibrium (e.g., a fixed
number of iterations):

— Move to a random neighbor of the plan (an uphill
move is allowed with probability e —Acost/temperature)

— Reduce temperature

* Return the plan visited with the lowest cost
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Two-phase optimization

* Phase [: run iterative improvement for a while to
find a good local optimum

* Phase II: run simulated annealing with a low
initial temperature to get more improvements

* Why does it tend to work better than both
iterative improvement and simulated annealing?
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Shape of the cost function

Cost * An average local optimum has
a much lower cost than an
average plan

» The average distance between
a random state and a local

Cup-shaped optimum is long
* There are lots of local optima
* Many local optima are
connected together through
low-cost plans within short
Space of plans

distances -

Comparison of randomized algorithms

* [terative improvement
— Too easily trapped in a local optimum
— Too much work to restart
» Simulated annealing
— Too much time spent on high-cost plans
* Two-phase
— Phase I uses iterative improvement to get to the cup
bottom quickly
— Phase II uses simulated annealing to explore the cup
bottom further 30
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