
1

Query Optimization

CPS 216
Advanced Database Systems

2

Wavelets
• Mathematical tool for hierarchical decomposition of

functions and signals
• Haar wavelets: recursive pair-wise averaging and

differencing at different resolutions
– Simplest wavelet basis, easy to implement
Resolution Averages Detail coefficients

3 [2, 2, 0, 2, 3, 5, 4, 4]
2 [2, 1, 4, 4] [0, –1, –1, 0]
1 [1.5, 4] [0.5, 0]
0 [2.75] [–1.25]

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]

3

Haar wavelet coefficients
• Hierarchical decomposition structure

2.75

–1.25

0.5 0

0 –1 –1 0

+ –

+

+ + + +

– –

––––

+

2 2 20 3 5 4 4

Original data

2

4

Wavelet-based histogram
• Idea: use a compact subset of wavelet coefficients to

approximate the data distribution (Matias et al.,
SIGMOD 1998)
– The function to transform is the distribution function which

maps vi to fi

• Steps
– Compute cumulative data distribution function C(v)

• C(v) is the number of tuples with R.A ≤ v

– Compute wavelet transform of C
– Coefficient thresholding: keep only the largest coefficients in

absolute normalized value
• For Haar wavelets, divide coefficients at resolution j by 2 (j ⁄ 2)

5

Using a wavelet-based histogram
• Q: σA > u AND A ≤ v R
• | Q | = C(v) – C(u)
• Search the tree to reconstruct C(v) and C(u)

– Worst case: two paths, O(log N), where N is the size
of the domain

– If we just store B coefficients, it becomes O(B), but
answers are now approximate

• What about Q: σA = v R?
– Same as σA > v – 1 AND A ≤ v R

6

Summary of histograms
• Wavelet-based histograms are shown to work

better than traditional bucket-based histograms

• The trick of using cumulative distribution for
range query estimation also works for bucket-
based histograms

• Trade-off: better accuracy ↔ bigger size; higher
construction and maintenance costs

3

7

Cost-based query optimization
• Review

– Algorithms for physical plan operators (sorting, hashing,
indexing, …)

– Query execution techniques (buffer management, pipelining
using the iterator interface…)

– Query rewrite techniques (relational algebra equivalences,
unnesting, decorrelating SQL queries…)

– Cost estimation techniques (I/O analysis of algorithms,
histograms…)

• Mission: searching for an “optimal” plan
– Focus on select-project-join query blocks

• Join ordering is the most important subproblem

8

Search space
• “Bushy” plan example:

• How many plans are there for R1 �� … �� Rn?
– Lots (30240 for n = 6)

• There are more!
– How about multiway joins?
– How about different join methods?
– How about placement of selection and projection?

��

�� ��

��R2 R1 R3

R4 R5

9

Left-deep plans

• Heuristic: consider only “left-deep” plans, wherein only
the left child can be a join
– Tend to be better than plans of other shapes

• Many join algorithms scan inner (right) relation multiple times—you
will not want it to be a complex subtree

• How many left-deep plans are there for R1 �� … �� Rn?
– Significantly fewer, but still lots—n! (720 for n = 6)

��

��

��

��

R2 R1

R3

R4

R5

4

10

A greedy algorithm
• S1, …, Sn

– Say selections have been pushed down; i.e., Si = σp Ri

• Start with the pair Si, Sj with the smallest estimated size
for Si �� Sj

• Repeat until no relation is left:
Pick Si from the remaining relations such that the join of
Si and the current result yields an intermediate result of
the smallest size

Current subplan

…, Si, Sj, Sk, …
Remaining

relations
to be joined

Pick most efficient join method

��

Si

Minimize expected size

11

Query optimization in System R
• A.k.a. Selinger-style query optimization

– The classic paper on query optimization (Selinger et
al., SIGMOD 1979)

• Basic ideas
– Left-deep trees only
– Bottom-up generation of plans
– Interesting orders

12

Bottom-up plan generation
• Observation 1: Once we have joined k relations together,

the method of joining this result further with another
relation is independent of the previous join methods

• Observation 2: Any subplan of an optimal plan must also
be optimal (otherwise we could replace the subplan to
get a better overall plan)

» Not exactly accurate (next slide)
• Bottom-up generation of optimal plans

– Compute the optimal plans for joining k relations together
• Suboptimal plans are pruned

– From these plans, derive the optimal plans for joining k+1
relations together

5

13

Motivation for “interesting order”
Example: R(A, B) �� S(A, C) �� T(A, D)
• Best plan for R �� S: hash join (beats sort-merge join)
• Best overall plan: sort-merge join R and S, and then sort-

merge join with T
– Subplan of the optimal plan is not optimal!

• Why?
– The result of the sort-merge join of R and S is sorted on A
– This is an interesting order that can be exploited by later

processing (e.g., join, duplicate elimination, GROUP BY,
ORDER BY, etc.)!

14

Dealing with interesting orders
• When picking the optimal plan

– Comparing their costs is not enough
• Plans are not totally ordered by cost anymore

– Comparing interesting orders is also needed
• Plans are now partially ordered
• Plan X is better than plan Y if

– Cost of X is lower than Y
– Interesting orders produced by X subsume those produced by Y

• Need to keep a set of optimal plans for joining
every combination of k relations
– Typically one for each interesting order

15

System-R algorithm
• Pass 1: Find the best single-relation plans
• Pass 2: Find the best two-relation plans by considering

each single-relation plan (from Pass 1) as the outer
relation and every other relation as the inner relation
…

• Pass k: Find the best k-relation plans by considering each
(k–1)-relation plan (from Pass k–1) as the outer relation
and every other relation as the inner relation
…

• Heuristics
– Push selections and projections down
– Process cross products at the end

6

16

Reasoning about predicates
• SELECT * FROM R, S, T

WHERE R.A = S.A AND S.A = T.A;
• Looks like a cross product between R and T

– No join condition
• But there is really a join between R and T

– R.A = T.A is implied from the other two predicates
• A good optimizer should be able to detect this

case and consider the possibility of joining R with
T first

17

System-R algorithm example
• SELECT SID, CID

FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ’%data%’;

• Primary keys/indexes
– Student(SID), Enroll(CID, SID), Course(CID)

• Ordered, secondary indexes
– Student(age), Course(title)

18

Example: pass 1
• Plans for {Student}

– S1: Table scan, then filter (age < 10);
cost 100; result ordered by SID

– S2: Index scan using condition (age < 10);
cost 5; result ordered by age

• Plans for {Enroll}
– E1: Table scan;

cost 1000; result ordered by CID, SID
• Plans for {Course}

– C1: Table scan, then filter (title LIKE ’%data%’);
cost 40; result ordered by CID

– C2: Index scan, then filter (title LIKE ’%data%’);
cost 160; result ordered by title

7

19

Example: pass 2
• Plans for {Student, Enroll}

– Extending best plans for {Student}
• From S1: table scan, then filter (name = ’Bart’)

– Block-based nested loop join with Enroll; cost 1100
– Sort Enroll by SID, and merge join; cost 3100;

ordered by SID
– … …

• From S2: index scan using condition (name = ’Bart’)
– Block-based nested loop join with Enroll; cost 1005
– … …

– Extending best plans for {Enroll} … …

20

Example: pass 2 continued
• Plans for {Student, Course}

– Ignore; it is a cross product
• Plans for {Enroll, Course}

– Extending best plans for {Course}
• From C1: table scan, then filter (title LIKE ’%data%’)

– Merge join; cost 1040
– … …

– Extending best plans for {Enroll} … …

☻

21

Example: pass 3
• Finally, plans for {Student, Enroll, Course}

– Extending best plans for {Student, Enroll}
• (INDEX-SCAN(Student) NLJ Enroll) NLJ

FILTER(Course); cost …
• … …

– Extending best plans for {Student, Course}
• None!

– Extending best plans for {Enroll, Course}
• (FILTER(Course) SMJ Enroll) NLJ (INDEX-

SCAN(Student)); cost …
• … …

☻

8

22

Considering bushy plans
Straightforward generalization:
• Store all optimal 1-relation, 2-relation, …, and k-

relation plans
• To find the optimal plan for k+1 relations

– For every possible partition of these relations into two
groups, find the best ways of joining the optimal plans
for the two groups

– Store the overall optimal plans

23

Optimizer “blow-up”

• A 20-way join will easily choke an optimizer
using the System-R algorithm

• Solutions
– Heuristics-based query optimization
– Randomized query optimization (Ioannidis & Kang,

SIGMOD 1990)

24

Search space revisited

Cost

Space of plans

Plan Transformations

Global optimum
Local optimum

9

25

Transformations
Relational algebra equivalences

(or query rewrite rules in general):
• Join method choice: R ��method1S → R ��method2S
• Join commutativity: R �� S → S �� R
• Join associativity: (R �� S) �� T → R �� (S �� T)
• Left join exchange: (R �� S) �� T → R �� (T �� S)
• Right join exchange: R �� (S �� T)→ S �� (R �� T)
• Why the last two redundant rules?

– To avoid using the join commutativity rule, which does not
change the cost of certain plans (e.g., sort-merge join)—
creating plateaus in the plan space

26

Iterative improvement
• Repeat until some stopping condition (e.g., time

runs out):
– Start with a random plan
– Repeatedly go downhill (i.e., pick a neighbor with a

lower cost randomly) to get to a local optimum

• Return the smallest local optimum found

27

Simulated annealing
• Start with a plan and an initial temperature
• Repeat until temperature is 0:

Repeat until some equilibrium (e.g., a fixed
number of iterations):
– Move to a random neighbor of the plan (an uphill

move is allowed with probability e – ∆cost ⁄ temperature)
– Reduce temperature

• Return the plan visited with the lowest cost

10

28

Two-phase optimization
• Phase I: run iterative improvement for a while to

find a good local optimum
• Phase II: run simulated annealing with a low

initial temperature to get more improvements

• Why does it tend to work better than both
iterative improvement and simulated annealing?

29

Shape of the cost function
• An average local optimum has

a much lower cost than an
average plan

• The average distance between
a random state and a local
optimum is long

• There are lots of local optima
• Many local optima are

connected together through
low-cost plans within short
distances

Cost

Space of plans

Cup-shaped

30

Comparison of randomized algorithms

• Iterative improvement
– Too easily trapped in a local optimum
– Too much work to restart

• Simulated annealing
– Too much time spent on high-cost plans

• Two-phase
– Phase I uses iterative improvement to get to the cup

bottom quickly
– Phase II uses simulated annealing to explore the cup

bottom further

