
1

Online Aggregation
[Hellerstein, Haas, Wang]

Mark Fashing and Stacy President

to be followed by a presentation on
the Ripple Join algorithm by

Kashi Vishwanath and Parag Palekar

Outline
� Introduction and motivation
� Related work
� Usability and performance goals
� Building a system

� random access to data
� GROUP BY and DISTINCT
� index striding

Introduction
� Aggregations - characterizations over data
� Batch processing

� wait a long time for an exact answer
� Online aggregration

� get rough approximations quickly
� give user continuous updates on progress
� requires a radically different approach

Motivation

SELECT AVG(final_grade)
FROM grades

WHERE course_name = 'CPS216'

AVG Confidence Interval
2.6336 95 0.0652539

14% done

Online Aggregation Interface

!

AVG

2.631406

Advantages
� Natural and intuitive interface
� No understanding of statistics required
� Status bar keeps user interested
� Could also continuously update graphical output

(i.e., maps and graphs)

Statistical Estimates
� Running aggregate is a statistical estimator
� Previous research set confidence intervals

BEFORE query processing
� Online aggregation allows users to decide

DURING query processing
� also, users can control groups separately without prior

knowledge of GROUP BY results

2

Related Work
� Online Analytical Processing (OLAP)

� super-aggregation (“roll-up”)
� sub-aggregation (“roll-down”)
� takes a long time

� “Fast-first” query processing
� get first tuples quickly
� potentially useful for online aggregation

Usability Goals
� Continuous Observation

� develop an API
� Control of Time/Precision
� Control of Fairness/Partiality

� update at same rate
� confidence intervals decrease at same rate

Performance Goals
� Minimum Time to Accuracy
� Minimum Time to Completion

� secondary goal
� Pacing

Naive Online Aggregation
� POSTGRES user functions

� poor performance
� cannot use GROUP BY clause
� minimize time to completion

� Better to modify the database engine
� implemented modifications on POSTGRES

Random Access to Data
� Heap Scans

� probably the best
� but heaps may reflect some logical order

� Index Scans
� inappropriate for scans based on indexed attributes

� Sampling from Indices
� inefficient

GROUP BY and DISTINCT
� Traditionally sort by aggregation fields

� sorting is a blocking operation!
� Instead hash into groups

� but large hash tables may thrash
� Hybrid Hashing/Hybrid Cache provide solutions

3

Index Striding
� Hashing not fair to smaller groups
� Want predictable group order but randomness

within groups
� Use index on grouping attribute

B-Tree Example

k1 k2 k3 k4

� As efficient as scanning on a clustered secondary
index

� No block will be fetched more than once
� Controls delivery of tuples

