Recursive Square Computation

» Input :k
> Output :square(k) = k?
> Math :(k-1)2 = k2 =2k + 1 0 k2 = (k-1)? + (2k-1)

012=1

02°=1+3

03=1+3+5

(o T

0 k¥=1+3+5+ ...+ (2k-1)
» Recursion

o square(0) =0
o square(k) = square(k-1) + (2k-1) for k={1,2,3,...}
» Next : High level code

Recursive Square Computation : C Program

» Program
#include <stdio.h>
int square(int k) {
if (k==0) return O;
else return (square(k-1) + 2*k-1);

}
main() {
int k;
printf("Please type in a +ve nhumber between 1 and 100: ");
scanf("%d",&k);
printf("The input number is %d\n",k);
printf("The square is %d\n",square(k));
}

» Next : See corresponding assembly program. (square.s)

Running square.s on SPIM

» High level program
hopi mithuna> gcc sg.c
hopi mithuna> a.out
Please type in a +ve number between 1 and 100: 23
The input number is 23
The square is 529

» Assembly program
(spim) load "square.s"
(spim) load "spimutils/utils.s"
(spim) run
Please type in a +ve number between 1 and 100: 23
The input number is 23
The square is 529

» It works : why does it work?

0 Understanding Stack frames (next)

o Revisit assembly code and discuss

Understanding Recursion

» Important : Understandin@tack Frames

What is the size
of Stack Frames?

When created?
When destroyed?
By whom?

What is it used for?
How is it used?

Question # 1

» When created? When discarded? By whom?
o A new frame forevery dynamic invocatioaf a function

o Created on entry into function
= subu $sp, $sp, 32 # First instruction of every function (32 may vary)

o Deleted just before returning from function
= addu $sp, $sp, 32 # Penultimate instruction (before return)

» Exercise : Show frames on stack for the following call sequence.
o main() calls foo()

foo() calls foo() recursively

foo() calls foo() recursively

foo() calls bar()

Bar() executes return

foo() executes return

foo() calls bar()

bar() executes return

foo executes return

foo() executes return

main() executes exit()

O 0O 000 Oo0OO0OOoOOoOOo

Question #2

» What is it used for? How is it used?
» Used to save
o Variables of local scope and arguments
o Temporary variables (used in evaluation of long expressions)
0 Registers (callee saved which function modifies, etc)
» Each such variable is assigned a place in the stack frame
0 Addressed relative to Stack pointer (ignore frame pointer for now)

o E.g. Variablemp is assigned to locatiop4($sp) say, of a 32 byte
stack frame

0 Assembly code to computeip++ is 24($5p)_.=

Iw $t0, 24($sp)
addi $t0, $t0, 1 16(3spy— el

sw $t0, 24($sp)

0($sp)—»

Question # 3

» What is the size of Stack Frames?
» Big enough to
o Hold all arguments and variables of local scope
o Temporary variables (used in evaluating large expressions)
0 Save callee saved registers and
0 Save caller saved registers we want to retain
» Larger Stack Frame than the minimum required
o Correctness not affected
o Performance may be affected
» Conventions
0 At least 24 bytes
o Double word aligned (divisible by 8)
» Next: Revisit assembly code and discuss

