
1

Recursive Square Computation

¾ Input : k
¾ Output : square(k) = k2

¾ Math : (k-1)2 = k2 –2k + 1 ⇒ k2 = (k-1)2 + (2k-1)
o 12 = 1
o 22 = 1 + 3
o 32 = 1 + 3 + 5
o ………
o k2 = 1 + 3 + 5 + … + (2k-1)

¾ Recursion

o square(0) = 0
o square(k) = square(k-1) + (2k-1) for k = {1,2,3,…}

¾ Next : High level code

Recursive Square Computation : C Program

¾ Program
#include <stdio.h>

int square(int k) {

if (k==0) return 0;

else return (square(k-1) + 2*k-1);

}

main() {

int k;

printf("Please type in a +ve number between 1 and 100: ");

scanf("%d",&k);

printf("The input number is %d\n",k);

printf("The square is %d\n",square(k));

}

¾ Next : See corresponding assembly program. (square.s)

2

Running square.s on SPIM

¾ High level program
hopi mithuna> gcc sq.c
hopi mithuna> a.out
Please type in a +ve number between 1 and 100: 23
The input number is 23
The square is 529

¾ Assembly program
(spim) load "square.s"
(spim) load "spimutils/utils.s"
(spim) run
Please type in a +ve number between 1 and 100: 23
The input number is 23
The square is 529

¾ It works : why does it work?
o Understanding Stack frames (next)
o Revisit assembly code and discuss

Understanding Recursion

¾ Important : Understanding Stack Frames

When created?
When destroyed?

By whom?

What is the size
of Stack Frames?

What is it used for?
How is it used?

3

Question # 1

¾ When created? When discarded? By whom?
o A new frame for every dynamic invocationof a function
o Created on entry into function

� subu $sp, $sp, 32 # First instruction of every function (32 may vary)

o Deleted just before returning from function
� addu $sp, $sp, 32 # Penultimate instruction (before return)

¾ Exercise : Show frames on stack for the following call sequence.
o main() calls foo()
o foo() calls foo() recursively
o foo() calls foo() recursively
o foo() calls bar()
o Bar() executes return
o foo() executes return
o foo() calls bar()
o bar() executes return
o foo executes return
o foo() executes return
o main() executes exit()

Question #2

¾ What is it used for? How is it used?

¾ Used to save

o Variables of local scope and arguments

o Temporary variables (used in evaluation of long expressions)

o Registers (callee saved which function modifies, etc)

¾ Each such variable is assigned a place in the stack frame

o Addressed relative to Stack pointer (ignore frame pointer for now)

o E.g. Variable tmp is assigned to location 24($sp) say, of a 32 byte
stack frame

o Assembly code to compute tmp++ is
lw $t0, 24($sp)

addi $t0, $t0, 1

sw $t0, 24($sp)

tmp

$ra

0($sp)

16($sp)

24($sp)

4

Question # 3

¾ What is the size of Stack Frames?

¾ Big enough to

o Hold all arguments and variables of local scope

o Temporary variables (used in evaluating large expressions)

o Save callee saved registers and

o Save caller saved registers we want to retain

¾ Larger Stack Frame than the minimum required

o Correctness not affected

o Performance may be affected

¾ Conventions

o At least 24 bytes

o Double word aligned (divisible by 8)

¾ Next: Revisit assembly code and discuss

