
CHAPTER 2 21................................................
Protocol Building Blocks 21..........................
INTRODUCTION TO PROTOCOLS 21......

The Purpose Protocols 22................................
The Players 23.................................................
Arbitrated Protocols 23.....................................
TABLE 2.1  Dramatis Personae 23..................
Adjudicated Protocols 26.................................
Self-Enforcing Protocols 26..............................
Attacks against Protocols 27............................

COMMUNICATIONS USING SYMMET 28..
ONE-WAY FUNCTIONS 29........................
HASH FUNCTIONS 30...............................

Message Au then tication Codes 31................
COMMUNICATIONS USING PUBLIC- 31...

Hybrid Cryptosystems 32.................................
Merkle�s Puzzles 34.........................................

DIGITAL SIGNATURES 34.........................
Signing Documents with Symmetric 35.............
Digital Signature Trees 37................................
Signing Documents with Public-Key 37............
Signing Documents and Timestamps 38.........
Signing Documents with Public-Key 38............
Algorithms and Terminology 39.......................
Multiple Signatures 39......................................
Nonrepudiation and Digital Signatures 40........
Applications Digital Signatures 41....................

DIGITAL SIGNATURES WITH 41................
Resending the Message as a Receipt 42........
Foiling the Resend Attack 43...........................
Attacks against Public-Key Cryptography 43...

RANDOM AND PSEUDO-RANDOM-S 44...
Pseudo-Random Sequences 44......................
Cryptographically Secure Pseudo-Rando 45....
Real Random Sequences 45...........................



CHAPTER 2 

Protocol Building Blocks 

2.1 INTRODUCTION TO PROTOCOLS 

The whole point of cryptography is to solve problems. (Actually, that’s the whole 
point of computers-something many people tend to forget.) Cryptography solves 
problems that involve secrecy, authentication, integrity, and dishonest people. You 
can learn all about cryptographic algorithms and techniques, but these are academic 
unless they can solve a problem. This is why we are going to look at protocols first. 

A protocol is a series of steps, involving two or more parties, designed to accom- 
plish a task. This is an important definition. A “series of steps” means that the pro- 
tocol has a sequence, from start to finish. Every step must be executed in turn, and 
no step can be taken before the previous step is finished. “Involving two or more 
parties” means that at least two people are required to complete the protocol; one 
person alone does not make a protocol. A person alone can perform a series of steps 
to accomplish a task (like baking a cake), but this is not a protocol. (Someone else 
must eat the cake to make it a protocol.) Finally, “designed to accomplish a task” 
means that the protocol must achieve something. Something that looks like a pro- 
tocol but does not accomplish a task is not a protocol-it’s a waste of time. 

Protocols have other characteristics as well: 

- Everyone involved in the protocol must know the protocol and all of 
the steps to follow in advance. 

- Everyone involved in the protocol must agree to follow it. 
- The protocol must be unambiguous; each step must be well defined 

and there must be no chance of a misunderstanding. 
- The protocol must be complete; there must be a specified action for 

every possible situation. 
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CHAPTER 2 Protocol Building Blocks 

The protocols in this book are organized as a series of steps. Execution of the pro- 
tocol proceeds linearly through the steps, unless there are instructions to branch to 
another step. Each step involves at least one of two things: computations by one or 
more of the parties, or messages sent among the parties. 

A cryptographic protocol is a protocol that uses cryptography. The parties can be 
friends and trust each other implicitly or they can be adversaries and not trust one 
another to give the correct time of day. A cryptographic protocol involves some 
cryptographic algorithm, but generally the goal of the protocol is something beyond 
simple secrecy. The parties participating in the protocol might want to share parts 
of their secrets to compute a value, jointly generate a random sequence, convince 
one another of their identity, or simultaneously sign a contract. The whole point of 
using cryptography in a protocol is to prevent or detect eavesdropping and cheating. 
If you have never seen these protocols before, they will radically change your ideas 
of what mutually distrustful parties can accomplish over a computer network. In 
general, this can be stated as: 

- It should not be possible to do more or learn more than what is spec- 
ified in the protocol. 

This is a lot harder than it looks. In the next few chapters I discuss a lot of proto- 
cols. In some of them it is possible for one of the participants to cheat the other. In 
others, it is possible for an eavesdropper to subvert the protocol or learn secret infor- 
mation. Some protocols fail because the designers weren’t thorough enough in their 
requirements definitions. Others fail because their designers weren’t thorough 
enough in their analysis. Like algorithms, it is much easier to prove insecurity than 
it is to prove security. 

The Purpose of Protocols 

In daily life, there are informal protocols for almost everything: ordering goods 
over the telephone, playing poker, voting in an election. No one thinks much about 
these protocols; they have evolved over time, everyone knows how to use them, and 
they work reasonably well. 

These days, more and more human interaction takes place over computer net- 
works instead of face-to-face. Computers need formal protocols to do the same 
things that people do without thinking. If you moved from one state to another and 
found a voting booth that looked completely different from the ones you were used 
to, you could easily adapt. Computers are not nearly so flexible. 

Many face-to-face protocols rely on people’s presence to ensure fairness and secu- 
rity. Would you send a stranger a pile of cash to buy groceries for you? Would you 
play poker with someone if you couldn’t see him shuffle and deal? Would you mail 
the government your secret ballot without some assurance of anonymity? 

It is na’ive to assume that people on computer networks are honest. It is naive to 
assume that the managers of computer networks are honest. It is even naive to 
assume that the designers of computer networks are honest. Most are, but the dis- 
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2.1 Introduction to Protocols 

honest few can do a lot of damage. By formalizing protocols, we can examine ways 
in which dishonest parties can subvert them. Then we can develop protocols that 
are immune to that subversion. 

In addition to formalizing behavior, protocols abstract the process of accomplish- 
ing a task from the mechanism by which the task is accomplished. A communica- 
tions protocol is the same whether implemented on PCs or VAXs. We can examine 
the protocol without getting bogged down in the implementation details. When we 
are convinced we have a good protocol, we can implement it in everything from 
computers to telephones to intelligent muffin toasters. 

The Players 

To help demonstrate protocols, I have enlisted the aid of several people (see Table 
2.1). Alice and Bob are the first two. They will perform all general two-person pro- 
tocols. As a rule, Alice will initiate all protocols and Bob will respond. If the proto- 
col requires a third or fourth person, Carol and Dave will perform those roles. Other 
actors will play specialized supporting roles; they will be introduced later. 

Arbitrated Protocols 

An arbitrator is a disinterested third party trusted to complete a protocol (see Fig- 
ure 2. la]. Disinterested means that the arbitrator has no vested interest in the pro- 
tocol and no particular allegiance to any of the parties involved. Trusted means that 
all people involved in the protocol accept what he says as true, what he does as cor- 
rect, and that he will complete his part of the protocol. Arbitrators can help com- 
plete protocols between two mutually distrustful parties. 

In the real world, lawyers are often used as arbitrators. For example, Alice is sell- 
ing a car to Bob, a stranger. Bob wants to pay by check, but Alice has no way of 
knowing if the check is good. Alice wants the check to clear before she turns the 
title over to Bob. Bob, who doesn’t trust Alice any more than she trusts him, doesn’t 
want to hand over a check without receiving a title. 

Alice 
Bob 
Carol 
Dave 
Eve 
Mallory 
Trent 
Walter 
Pegs 
Victor 

TABLE 2.1 
Dramatis Personae 

First participant in all the protocols 
Second participant in all the protocols 
Participant in the three- and four-party protocols 
Participant in the four-party protocols 
Eavesdropper 
Malicious active attacker 
Trusted arbitrator 
Warden; he’ll be guarding Alice and Bob in some protocols 
Prover 
Verifier 
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Alice 

Trent 

Bob 

Alice Bob Trent 

Alice 

(b) Adjudicated protocol 

Bob 

4 w 

(c) Self-enforcing protocol 

Figure 2.1 Types of protocols. 

Enter a lawyer trusted by both. With his help, Alice and Bob can use the following 
protocol to ensure that neither cheats the other: 

(1) Alice gives the title to the lawyer. 
(2) Bob gives the check to Alice. 
(3) Alice deposits the check. 
(4) After waiting a specified time period for the check to clear, the lawyer 

gives the title to Bob. If the check does not clear within the specified time 
period, Alice shows proof of this to the lawyer and the lawyer returns the 
title to Alice. 

In this protocol, Alice trusts the lawyer not to give Bob the title unless the check 
has cleared, and to give it back to her if the check does not clear. Bob trusts the 
lawyer to hold the title until the check clears, and to give it to him once it does. The 
lawyer doesn’t care if the check clears. He will do his part of the protocol in either 
case, because he will be paid in either case. 

Page 24



2.1 Introduction to Protocols 

In the example, the lawyer is playing the part of an escrow agent. Lawyers also act 
as arbitrators for wills and sometimes for contract negotiations. The various stock 
exchanges act as arbitrators between buyers and sellers. 

Bankers also arbitrate protocols. Bob can use a certified check to buy a car from 
Alice: 

(1) Bob writes a check and gives it to the bank. 

(2) After putting enough of Bob’s money on hold to cover the check, the bank 
certifies the check and gives it back to Bob. 

(3) Alice gives the title to Bob and Bob gives the certified check to Alice. 

(4) Alice deposits the check. 

This protocol works because Alice trusts the banker’s certification. Alice trusts 
the bank to hold Bob’s money for her, and not to use it to finance shaky real estate 
operations in mosquito-infested countries. 

A notary public is another arbitrator. When Bob receives a notarized document 
from Alice, he is convinced that Alice signed the document voluntarily and with her 
own hand. The notary can, if necessary, stand up in court and attest to that fact. 

The concept of an arbitrator is as old as society. There have always been people- 
rulers, priests, and so on-who have the authority to act fairly. Arbitrators have a 
certain social role and position in our society; betraying the public trust would jeop- 
ardize that. Lawyers who play games with escrow accounts face almost-certain dis- 
barment, for example. This picture of trust doesn’t always exist in the real world, 
but it’s the ideal. 

This ideal can translate to the computer world, but there are several problems 
with computer arbitrators: 

- It is easier to find and trust a neutral third party if you know who the 
party is and can see his face. Two parties suspicious of each other are 
also likely to be suspicious of a faceless arbitrator somewhere else on 
the network. 

- The computer network must bear the cost of maintaining an arbitra- 
tor. We all know what lawyers charge; who wants to bear that kind of 
network overhead? 

There is a delay inherent in any arbitrated protocol. 

The arbitrator must deal with every transaction; he is a bottleneck in 
large-scale implementations of any protocol. Increasing the number 
of arbitrators in the implementation can mitigate this problem, but 
that increases the cost. 

Since everyone on the network must trust the arbitrator, he repre- 
sents a vulnerable point for anyone trying to subvert the network. 
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Even so, arbitrators still have a role to play. In protocols using a trusted arbitrator, 
the part will be played by Trent. 

Adjudicated Protocols 

Because of the high cost of hiring arbitrators, arbitrated protocols can be subdi- 
vided into two lower-level subprotocols. One is a nonarbitrated subprotocol, exe- 
cuted every time parties want to complete the protocol. The other is an arbitrated 
subprotocol, executed only in exceptional circumstances-when there is a dispute. 
This special type of arbitrator is called an adjudicator (see Figure 2.lb). 

An adjudicator is also a disinterested and trusted third party. Unlike an arbitrator, 
he is not directly involved in every protocol. The adjudicator is called in only to 
determine whether a protocol was performed fairly. 

Judges are professional adjudicators. Unlike a notary public, a judge is brought in 
only if there is a dispute. Alice and Bob can enter into a contract without a judge. A 
judge never sees the contract until one of them hauls the other into court. 

This contract-signing protocol can be formalized in this way: 
Nonarbitrated subprotocol (executed every time): 

(1) Alice and Bob negotiate the terms of the contract. 
(2) Alice signs the contract. 
(3) Bob signs the contract. 

Adjudicated subprotocol (executed only in case of a dispute): 

(4) Alice and Bob appear before a judge. 
(5) Alice presents her evidence. 
(6) Bob presents his evidence. 
(7) The judge rules on the evidence. 

The difference between an adjudicator and an arbitrator (as used in this book) is 
that the adjudicator is not always necessary. In a dispute, a judge is called in to adju- 
dicate. If there is no dispute, using a judge is unnecessary. 

There are adjudicated computer protocols. These protocols rely on the parties to 
be honest; but if someone suspects cheating, a body of data exists so that a trusted 
third party could determine if someone cheated. In a good adjudicated protocol, the 
adjudicator could also determine the cheater’s identity. Instead of preventing cheat- 
ing, adjudicated protocols detect cheating. The inevitability of detection acts as a 
preventive and discourages cheating. 

Self-Enforcing Protocols 

A self-enforcing protocol is the best type of protocol. The protocol itself guaran- 
tees fairness (see Figure 2.1 c). No arbitrator is required to complete the protocol. No 
adjudicator is required to resolve disputes. The protocol is constructed so that there 
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cannot be any disputes. If one of the parties tries to cheat, the other party immedi- 
ately detects the cheating and the protocol stops. Whatever the cheating party 
hoped would happen by cheating, doesn’t happen. 

In the best of all possible worlds, every protocol would be self-enforcing. Unfor- 
tunately, there is not a self-enforcing protocol for every situation. 

Attacks against Protocols 

Cryptographic attacks can be directed against the cryptographic algorithms used 
in protocols, against the cryptographic techniques used to implement the algo- 
rithms and protocols, or against the protocols themselves. Since this section of the 
book discusses protocols, I will assume that the cryptographic algorithms and tech- 
niques are secure. I will only examine attacks against the protocols. 

People can try various ways to attack a protocol. Someone not involved in the pro- 
tocol can eavesdrop on some or all of the protocol. This is called a passive attack, 
because the attacker does not affect the protocol. All he can do is observe the proto- 
col and attempt to gain information. This kind of attack corresponds to a ciphertext- 
only attack, as discussed in Section 1.1. Since passive attacks are difficult to detect, 
protocols try to prevent passive attacks rather than detect them. In these protocols, 
the part of the eavesdropper will be played by Eve. 

Alternatively, an attacker could try to alter the protocol to his own advantage. He 
could pretend to be someone else, introduce new messages in the protocol, delete 
existing messages, substitute one message for another, replay old messages, inter- 
rupt a communications channel, or alter stored information in a computer. These 
are called active attacks, because they require active intervention. The form of these 
attacks depends on the network. 

Passive attackers try to gain information about the parties involved in the protocol. 
They collect messages passing among various parties and attempt to cryptanalyze 
them. Active attacks, on the other hand, can have much more diverse objectives. The 
attacker could be interested in obtaining information, degrading system performance, 
corrupting existing information, or gaining unauthorized access to resources. 

Active attacks are much more serious, especially in protocols in which the differ- 
ent parties don’t necessarily trust one another. The attacker does not have to be a 
complete outsider. He could be a legitimate system user. He could be the system 
administrator. There could even be many active attackers working together. Here, 
the part of the malicious active attacker will be played by Mallory. 

It is also possible that the attacker could be one of the parties involved in the pro- 
tocol. He may lie during the protocol or not follow the protocol at all. This type of 
attacker is called a cheater. Passive cheaters follow the protocol, but try to obtain 
more information than the protocol intends them to. Active cheaters disrupt the 
protocol in progress in an attempt to cheat. 

It is very difficult to maintain a protocol’s security if most of the parties involved 
are active cheaters, but sometimes it is possible for legitimate parties to detect that 
active cheating is going on. Certainly, protocols should be secure against passive 
cheating. 
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2.2 COMMUNICATIONS USING SYMMETRIC CRYPTOGRAPHY 

How do two parties communicate securely? They encrypt their communications, of 
course. The complete protocol is more complicated than that. Let’s look at what 
must happen for Alice to send an encrypted message to Bob. 

(1) Alice and Bob agree on a cryptosystem. 
(2) Alice and Bob agree on a key. 
(3) Alice takes her plaintext message and encrypts it using the encryption 

algorithm and the key. This creates a ciphertext message. 
(4) Alice sends the ciphertext message to Bob. 
(5) Bob decrypts the ciphertext message with the same algorithm and key and 

reads it. 

What can Eve, sitting between Alice and Bob, learn from listening in on this pro- 
tocol? If all she hears is the transmission in step (4) she must try to cryptanalyze the 
ciphertext. This passive attack is a ciphertext-only attack; we have algorithms that 
are resistant (as far as we know) to whatever computing power Eve could realisti- 
cally bring to bear on the problem. 

Eve isn’t stupid, though. She also wants to listen in on steps (1) and (2). Then, she 
would know the algorithm and the key-just as well as Bob. When the message 
comes across the communications channel in step (4), all she has to do is decrypt it 
herself. 

A good cryptosystem is one in which all the security is inherent in knowledge 
of the key and none is inherent in knowledge of the algorithm. This is why key 
management is so important in cryptography. With a symmetric algorithm, Alice 
and Bob can perform step (1) in public, but they must perform step (2) in secret. 
The key must remain secret before, during, and after the protocol-as long as the 
message must remain secret-otherwise the message will no longer be secure. 
(Public-key cryptography solves this problem another way, and will be discussed 
in Section 2.5.) 

Mallory, an active attacker, could do a few other things. He could attempt to 
break the communications path in step (4), ensuring that Alice could not talk to Bob 
at all. Mallory could also intercept Alice’s messages and substitute his own. If he 
knew the key (by intercepting the communication in step (2), or by breaking the 
cryptosystem), he could encrypt his own message and send it to Bob in place of the 
intercepted message. Bob would have no way of knowing that the message had not 
come from Alice. If Mallory didn’t know the key, he could only create a replacement 
message that would decrypt to gibberish. Bob, thinking the message came from 
Alice, might conclude that either the network or Alice had some serious problems. 

What about Alice? What can she do to disrupt the protocol? She can give a copy of 
the key to Eve. Now Eve can read whatever Bob says. She can reprint his words in 
The New York Times. Although serious, this is not a problem with the protocol. 
There is nothing to stop Alice from giving Eve a copy of the plaintext at any point 
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during the protocol. Of course, Bob could also do anything that Alice could. This 
protocol assumes that Alice and Bob trust each other. 

In summary, symmetric cryptosystems have the following problems: 

Keys must be distributed in secret. They are as valuable as all the 
messages they encrypt, since knowledge of the key gives knowledge 
of all the messages. For encryption systems that span the world, this 
can be a daunting task. Often couriers hand-carry keys to their desti- 
nations. 
If a key is compromised (stolen, guessed, extorted, bribed, etc.), then 
Eve can decrypt all message traffic encrypted with that key. She can 
also pretend to be one of the parties and produce false messages to 
fool the other party. 
Assuming a separate key is used for each pair of users in a network, 
the total number of keys increases rapidly as the number of users 
increases. A network of n users requires n(n - 1)/2 keys. For example, 
10 users require 4.5 different keys to talk with one another and 100 
users require 4950 keys. This problem can be minimized by keeping 
the number of users small, but that is not always possible. 

2.3 ONE-WAY FUNCTIONS 

The notion of a one-way function is central to public-key cryptography. While not 
protocols in themselves, one-way functions are a fundamental building block for 
most of the protocols discussed in this book. 

One-way functions are relatively easy to compute, but significantly harder to 
reverse. That is, given x it is easy to compute f(x), but given f(x) it is hard to compute 
x. In this context, “hard” is defined as something like: It would take millions of 
years to compute x from f(x), even if all the computers in the world were assigned to 
the problem. 

Breaking a plate is a good example of a one-way function. It is easy to smash a 
plate into a thousand tiny pieces. However, it’s not easy to put all of those tiny 
pieces back together into a plate. 

This sounds good, but it’s a lot of smoke and mirrors. If we are being strictly math- 
ematical, we have no proof that one-way functions exist, nor any real evidence that 
they can be constructed [230,530,600,661]. Even so, many functions look and smell 
one-way: We can compute them efficiently and, as of yet, know of no easy way to 
reverse them. For example, in a finite field x2 is easy to compute, but xllz is much 
harder. For the rest of this section, I’m going to pretend that there are one-way func- 
tions. I’ll talk more about this in Section 11.2. 

So, what good are one-way functions? We can’t use them for encryption as is. A 
message encrypted with the one-way function isn’t useful; no one could decrypt it. 
(Exercise: Write a message on a plate, smash the plate into tiny bits, and then give 
the bits to a friend. Ask your friend to read the message. Observe how impressed 
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he is with the one-way function.) For public-key cryptography, we need something 
else (although there are cryptographic applications for one-way functions-see 
Section 3.2). 

A trapdoor one-way function is a special type of one-way function, one with a 
secret trapdoor. It is easy to compute in one direction and hard to compute in the 
other direction. But, if you know the secret, you can easily compute the function in 
the other direction. That is, it is easy to compute f(x) given x, and hard to compute 
x given f(x). However, there is some secret information, y, such that given f(x) and y 
it is easy to compute x. 

Taking a watch apart is a good example of a trap-door one-way function. It is easy 
to disassemble a watch into hundreds of minuscule pieces. It is very difficult to put 
those tiny pieces back together into a working watch. However, with the secret 
information-the assembly instructions of the watch-it is much easier to put the 
watch back together. 

2.4 ONE-WAY HASH FUNCTIONS 

A one-way hash function has many names: compression function, contraction func- 
tion, message digest, fingerprint, cryptographic checksum, message integrity check 
(MIC), and manipulation detection code (MDC). Whatever you call it, it is central to 
modern cryptography. One-way hash functions are another building block for many 
protocols. 

Hash functions have been used in computer science for a long time. A hash func- 
tion is a function, mathematical or otherwise, that takes a variable-length input 
string (called a pre-image) and converts it to a fixed-length (generally smaller) output 
string (called a hash value). A simple hash function would be a function that takes 
pre-image and returns a byte consisting of the XOR of all the input bytes. 

The point here is to fingerprint the pre-image: to produce a value that indicates 
whether a candidate pre-image is likely to be the same as the real pre-image. 
Because hash functions are typically many-to-one, we cannot use them to deter- 
mine with certainty that the two strings are equal, but we can use them to get a rea- 
sonable assurance of accuracy. 

A one-way hash function is a hash function that works in one direction: It is easy 
to compute a hash value from pre-image, but it is hard to generate a pre-image that 
hashes to a particular value. The hash function previously mentioned is not one- 
way: Given a particular byte value, it is trivial to generate a string of bytes whose 
XOR is that value. You can’t do that with a one-way hash function. A good one-way 
hash function is also collision-free: It is hard to generate two pre-images with the 
same hash value. 

The hash function is public; there’s no secrecy to the process. The security of a 
one-way hash function is its one-wayness. The output is not dependent on the input 
in any discernible way. A single bit change in the pre-image changes, on the average, 
half of the bits in the hash value. Given a hash value, it is computationally unfeasi- 
ble to find a pre-image that hashes to that value. 
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Think of it as a way of fingerprinting files. If you want to verify that someone has 
a particular file (that you also have), but you don’t want him to send it to you, then 
ask him for the hash value. If he sends you the correct hash value, then it is almost 
certain that he has that file. This is particularly useful in financial transactions, 
where you don’t want a withdrawal of $100 to turn into a withdrawal of $1000 
somewhere in the network. Normally, you would use a one-way hash function 
without a key, so that anyone can verify the hash. If you want only the recipient to 
be able to verify the hash, then read the next section. 

Message Au then tication Codes 

A message authentication code (MAC), also known as a data authentication code 
(DAC), is a one-way hash function with the addition of a secret key (see Section 
18.14). Th h h 1 e as va ue is a function of both the pre-image and the key. The theory 
is exactly the same as hash functions, except only someone with the key can verify 
the hash value. You can create a MAC out of a hash function or a block encryption 
algorithm; there are also dedicated MACs. 

2.5 COMMUNICATIONS USING PUBLIC-KEY CRYPTOGRAPHY 

Think of a symmetric algorithm as a safe. The key is the combination. Someone 
with the combination can open the safe, put a document inside, and close it again. 
Someone else with the combination can open the safe and take the document out. 
Anyone without the combination is forced to learn safecracking. 

In 1976, Whitfield Diffie and Martin Hellman changed that paradigm of cryptog- 
raphy forever [496]. (The NSA has claimed knowledge of the concept as early as 
1966, but has offered no proof.) They described public-key cryptography. They used 
two different keys-one public and the other private. It is computationally hard to 
deduce the private key from the public key. Anyone with the public key can encrypt 
a message but not decrypt it. Only the person with the private key can decrypt the 
message. It is as if someone turned the cryptographic safe into a mailbox. Putting 
mail in the mailbox is analogous to encrypting with the public key; anyone can do 
it. Just open the slot and drop it in. Getting mail out of a mailbox is analogous to 
decrypting with the private key. Generally it’s hard; you need welding torches. 
However, if you have the secret (the physical key to the mailbox), it’s easy to get 
mail out of a mailbox. 

Mathematically, the process is based on the trap-door one-way functions previ- 
ously discussed. Encryption is the easy direction. Instructions for encryption are the 
public key; anyone can encrypt a message. Decryption is the hard direction. It’s 
made hard enough that people with Cray computers and thousands (even millions) 
of years couldn’t decrypt the message without the secret. The secret, or trapdoor, is 
the private key. With that secret, decryption is as easy as encryption. 

This is how Alice can send a message to Bob using public-key cryptography: 

(1) Alice and Bob agree on a public-key cryptosystem. 
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(2) Bob sends Alice his public key. 
(3) Alice encrypts her message using Bob’s public key and sends it to Bob. 
(4) Bob decrypts Alice’s message using his private key. 

Notice how public-key cryptography solves the key-management problem with 
symmetric cryptosystems. Before, Alice and Bob had to agree on a key in secret. 
Alice could choose one at random, but she still had to get it to Bob. She could hand 
it to him sometime beforehand, but that requires foresight. She could send it to him 
by secure courier, but that takes time. Public-key cryptography makes it easy. With 
no prior arrangements, Alice can send a secure message to Bob. Eve, listening in on 
the entire exchange, has Bob’s public key and a message encrypted in that key, but 
cannot recover either Bob’s private key or the message. 

More commonly, a network of users agrees on a public-key cryptosystem. Every 
user has his or her own public key and private key, and the public keys are all pub- 
lished in a database somewhere. Now the protocol is even easier: 

(1) Alice gets Bob’s public key from the database. 
(2) Alice encrypts her message using Bob’s public key and sends it to Bob. 
(3) Bob then decrypts Alice’s message using his private key. 

In the first protocol, Bob had to send Alice his public key before she could send 
him a message. The second protocol is more like traditional mail. Bob is not 
involved in the protocol until he wants to read his message. 

Hybrid Cryptosystems 

The first public-key algorithms became public at the same time that DES was 
being discussed as a proposed standard. This resulted in some partisan politics in the 
cryptographic community. As Diffie described it [494]: 

The excitement public key cryptosystems provoked in the popular and scientific 
press was not matched by corresponding acceptance in the cryptographic estab- 
lishment, however. In the same year that public key cryptography was discovered, 
the National Security Agency (NSA), proposed a conventional cryptographic sys- 
tem, designed by International Business Machines (IBM), as a federal Data 
Encryption Standard (DES). Marty Hellman and I criticized the proposal on the 
ground that its key was too small, but manufacturers were gearing up to support 
the proposed standard and our criticism was seen by many as an attempt to dis- 
rupt the standards-making process to the advantage of our own work. Public key 
cryptography in its turn was attacked, in sales literature [1125] and technical 
papers [849,1159] alike, more as though it were a competing product than a recent 
research discovery. This, however, did not deter the NSA from claiming its share 
of the credit. Its director, in the words of the Encyclopedia Britannica [1461], 
pointed out that “two-key cryptography had been discovered at the agency a 
decade earlier,” although no evidence for this claim was ever offered publicly. 
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2.5 Communications Using Public-Key Cryptography 

In the real world, public-key algorithms are not a substitute for symmetric algo- 
rithms. They are not used to encrypt messages; they are used to encrypt keys. There 
are two reasons for this: 

1. Public-key algorithms are slow. Symmetric algorithms are generally at 
least 1000 times faster than public-key algorithms. Yes, computers are get- 
ting faster and faster, and in 15 years computers will be able to do public- 
key cryptography at speeds comparable to symmetric cryptography today. 
But bandwidth requirements are also increasing, and there will always be 
the need to encrypt data faster than public-key cryptography can manage. 

2. Public-key cryptosystems are vulnerable to chosen-plaintext attacks. If C 
= E(P), when P is one plaintext out of a set of n possible plaintexts, then a 
cryptanalyst only has to encrypt all n possible plaintexts and compare the 
results with C (remember, the encryption key is public). He won’t be able 
to recover the decryption key this way, but he will be able to determine l? 

A chosen-plaintext attack can be particularly effective if there are relatively few 
possible encrypted messages. For example, if P were a dollar amount less than 
$l,OOO,OOO, this attack would work; the cryptanalyst tries all million possible dollar 
amounts. (Probabilistic encryption solves the problem; see Section 23.15.) Even if P 
is not as well-defined, this attack can be very effective. Simply knowing that a 
ciphertext does not correspond to a particular plaintext can be useful information. 
Symmetric cryptosystems are not vulnerable to this attack because a cryptanalyst 
cannot perform trial encryptions with an unknown key. 

In most practical implementations public-key cryptography is used to secure and 
distribute session keys; those session keys are used with symmetric algorithms to 
secure message traffic [879]. This is sometimes called a hybrid cryptosystem. 

(1) Bob sends Alice his public key. 
(2) Alice generates a random session key, K, encrypts it using Bob’s public key, 

and sends it to Bob. 

EdK) 
(3) Bob decrypts Alice’s message using his private key to recover the session 

key. 

WG(K)) = K 
(4) Both of them encrypt their communications using the same session key. 

Using public-key cryptography for key distribution solves a very important key- 
management problem. With symmetric cryptography, the data encryption key sits 
around until it is used. If Eve ever gets her hands on it, she can decrypt messages 
encrypted with it. With the previous protocol, the session key is created when it is 
needed to encrypt communications and destroyed when it is no longer needed. This 
drastically reduces the risk of compromising the session key. Of course, the private 
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key is vulnerable to compromise, but it is at less risk because it is only used once per 
communication to encrypt a session key. This is further discussed in Section 3.1. 

Merkle’s Puzzles 
Ralph Merkle invented the first construction of public-key cryptography. In 1974 

he registered for a course in computer security at the University of California, 
Berkeley, taught by Lance Hoffman. His term paper topic, submitted early in the 
term, addressed the problem of “Secure Communication over Insecure Channels” 
[1064]. Hoffman could not understand Merkle’s proposal and eventually Merkle 
dropped the course. He continued to work on the problem, despite continuing fail- 
ure to make his results understood. 

Merkle’s technique was based on “puzzles” that were easier to solve for the 
sender and receiver than for an eavesdropper. Here’s how Alice sends an encrypted 
message to Bob without first having to exchange a key with him. 

(1) Bob generates 2”, or about a million, messages of the form: “This is puzzle 
number x. This is the secret key number y,” where x is a random number 
and y is a random secret key. Both x and y are different for each message. 
Using a symmetric algorithm, he encrypts each message with a different 
20-bit key and sends them all to Alice. 

(2) Alice chooses one message at random and performs a brute-force attack to 
recover the plaintext. This is a large, but not impossible, amount of work. 

(3) Alice encrypts her secret message with the key she recovered and some 
symmetric algorithm, and sends it to Bob along with x. 

(4) Bob knows which secret key y he encrypts in message x, so he can decrypt 
the message. 

Eve can break this system, but she has to do far more work than either Alice or 
Bob. To recover the message in step (3), she has to perform a brute-force attack 
against each of Bob’s 2” messages in step (1); this attack has a complexity of 240. The 
x values won’t help Eve either; they were assigned randomly in step (1). In general, 
Eve has to expend approximately the square of the effort that Alice expends. 

This n to n2 advantage is small by cryptographic standards, but in some circum- 
stances it may be enough. If Alice and Bob can try ten thousand keys per second, it 
will take them a minute each to perform their steps and another minute to com- 
municate the puzzles from Bob to Alice on a 1.544 MB link. If Eve had comparable 
computing facilities, it would take her about a year to break the system. Other algo- 
rithms are even harder to break. 

2.6 DIGITAL SIGNATURES 

Handwritten signatures have long been used as proof of authorship of, or at least 
agreement with, the contents of a document. What is it about a signature that is so 
compelling [ 139212 
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1. The signature is authentic. The signature convinces the document’s recip- 
ient that the signer deliberately signed the document. 

2. The signature is unforgeable. The signature is proof that the signer, and no 
one else, deliberately signed the document. 

3. The signature is not reusable. The signature is part of the document; an 
unscrupulous person cannot move the signature to a different document. 

4. The signed document is unalterable. After the document is signed, it can- 
not be altered. 

5. The signature cannot be repudiated. The signature and the document are 
physical things. The signer cannot later claim that he or she didn’t sign it. 

In reality, none of these statements about signatures is completely true. Signa- 
tures can be forged, signatures can be lifted from one piece of paper and moved to 
another, and documents can be altered after signing. However, we are willing to 
live with these problems because of the difficulty in cheating and the risk of 
detection. 

We would like to do this sort of thing on computers, but there are problems. First, 
computer files are trivial to copy. Even if a person’s signature were difficult to forge 
(a graphical image of a written signature, for example), it would be easy to cut and 
paste a valid signature from one document to another document. The mere presence 
of such a signature means nothing. Second, computer files are easy to modify after 
they are signed, without leaving any evidence of modification. 

Signing Documents with Symmetric Cryptosystems and an Arbitrator 

Alice wants to sign a digital message and send it to Bob. With the help of Trent 
and a symmetric cryptosystem, she can. 

Trent is a powerful, trusted arbitrator. He can communicate with both Alice and 
Bob (and everyone else who may want to sign a digital document). He shares a secret 
key, KA, with Alice, and a different secret key, KB, with Bob. These keys have been 
established long before the protocol begins and can be reused multiple times for 
multiple signings. 

(1) Alice encrypts her message to Bob with KA and sends it to Trent. 
(2) Trent decrypts the message with KA. 
(3) Trent takes the decrypted message and a statement that he has received 

this message from Alice, and encrypts the whole bundle with KB. 
(4) Trent sends the encrypted bundle to Bob. 
(5) Bob decrypts the bundle with KB. He can now read both the message and 

Trent’s certification that Alice sent it. 

How does Trent know that the message is from Alice and not from some 
imposter? He infers it from the message’s encryption. Since only he and Alice share 
their secret key, only Alice could encrypt a message using it. 
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Is this as good as a paper signature? Let’s look at the characteristics we want: 

1. This signature is authentic. Trent is a trusted arbitrator and Trent knows 
that the message came from Alice. Trent’s certification serves as proof to 
Bob. 

2. This signature is unforgeable. Only Alice (and Trent, but everyone trusts 
him) knows KA, so only Alice could have sent Trent a message encrypted 
with KA. If someone tried to impersonate Alice, Trent would have imme- 
diately realized this in step (2) and would not certify its authenticity. 

3. This signature is not reusable. If Bob tried to take Trent’s certification and 
attach it to another message, Alice would cry foul. An arbitrator (it could 
be Trent or it could be a completely different arbitrator with access to the 
same information) would ask Bob to produce both the message and Alice’s 
encrypted message. The arbitrator would then encrypt the message with 
KA and see that it did not match the encrypted message that Bob gave him. 
Bob, of course, could not produce an encrypted message that matches 
because he does not know KA. 

4. The signed document is unalterable. Were Bob to try to alter the document 
after receipt, Trent could prove foul play in exactly the same manner just 
described. 

5. The signature cannot be repudiated. Even if Alice later claims that she 
never sent the message, Trent’s certification says otherwise. Remember, 
Trent is trusted by everyone; what he says is true. 

If Bob wants to show Carol a document signed by Alice, he can’t reveal his secret 
key to her. He has to go through Trent again: 

(1) Bob takes the message and Trent’s statement that the message came from 
Alice, encrypts them with KB, and sends them back to Trent. 

(2) Trent decrypts the bundle with KB. 
(3) Trent checks his database and confirms that the original message came 

from Alice. 
(4) Trent re-encrypts the bundle with the secret key he shares with Carol, Kc, 

and sends it to Carol. 
(5) Carol decrypts the bundle with KC. She can now read both the message and 

Trent’s certification that Alice sent it. 

These protocols work, but they’re time-consuming for Trent. He must spend his 
days decrypting and encrypting messages, acting as the intermediary between every 
pair of people who want to send signed documents to one another. He must keep a 
database of messages (although this can be avoided by sending the recipient a copy 
of the sender’s encrypted message). He is a bottleneck in any communications sys- 
tem, even if he’s a mindless software program. 
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Harder still is creating and maintaining someone like Trent, someone that every- 
one on the network trusts. Trent has to be infallible; if he makes even one mistake in 
a million signatures, no one is going to trust him. Trent has to be completely secure. 
If his database of secret keys ever got out or if someone managed to modify his pro- 
gramming, everyone’s signatures would be completely useless. False documents pur- 
ported to be signed years ago could appear. Chaos would result. Governments would 
collapse. Anarchy would reign. This might work in theory, but it doesn’t work very 
well in practice. 

Digital Signature Trees 

Ralph Merkle proposed a digital signature scheme based on secret-key cryptogra- 
phy, producing an infinite number of one-time signatures using a tree structure 
[1067,1068]. The basic idea of this scheme is to place the root of the tree in some 
public file, thereby authenticating it. The root signs one message and authenticates 
its sub-nodes in the tree. Each of these nodes signs one message and authenticates 
its sub-nodes, and so on. 

Signing Documents with Public-Key Cryptography 

There are public-key algorithms that can be used for digital signatures. In some 
algorithms-RSA is an example (see Section 19.3)-either the public key or the pri- 
vate key can be used for encryption. Encrypt a document using your private key, and 
you have a secure digital signature. In other cases-DSA is an example (see Section 
20.1)-there is a separate algorithm for digital signatures that cannot be used for 
encryption. This idea was first invented by Diffie and Hellman [496] and further 
expanded and elaborated on in other texts [ 1282,1328,1024,1283,426]. See [ 10991 for 
a good survey of the field. 

The basic protocol is simple: 

(1) Alice encrypts the document with her private key, thereby signing the doc- 
ument. 

(2) Alice sends the signed document to Bob. 
(3) Bob decrypts the document with Alice’s public key, thereby verifying the 

signature. 

This protocol is far better than the previous one. Trent is not needed to either sign 
or verify signatures. (He is needed to certify that Alice’s public key is indeed her 
public key.) The parties do not even need Trent to resolve disputes: If Bob cannot 
perform step (3) then he knows the signature is not valid. 

This protocol also satisfies the characteristics we’re looking for: 

1. The signature is authentic; when Bob verifies the message with Alice’s 
public key, he knows that she signed it. 

2. The signature is unforgeable; only Alice knows her private key. 
3. The signature is not reusable; the signature is a function of the document 

and cannot be transferred to any other document. 
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4. The signed document is unalterable; if there is any alteration to the docu- 
ment, the signature can no longer be verified with Alice’s public key. 

5. The signature cannot be repudiated. Bob doesn’t need Alice’s help to verify 
her signature. 

Signing Documents and Timestamps 

Actually, Bob can cheat Alice in certain circumstances. He can reuse the docu- 
ment and signature together. This is no problem if Alice signed a contract (what’s 
another copy of the same contract, more or less?), but it can be very exciting if Alice 
signed a digital check. 

Let’s say Alice sends Bob a signed digital check for $100. Bob takes the check to 
the bank, which verifies the signature and moves the money from one account to 
the other. Bob, who is an unscrupulous character, saves a copy of the digital check. 
The following week, he again takes it to the bank (or maybe to a different bank). The 
bank verifies the signature and moves the money from one account to the other. If 
Alice never balances her checkbook, Bob can keep this up for years. 

Consequently, digital signatures often include timestamps. The date and time of 
the signature are attached to the message and signed along with the rest of the mes- 
sage. The bank stores this timestamp in a database. Now, when Bob tries to cash 
Alice’s check a second time, the bank checks the timestamp against its database. 
Since the bank already cashed a check from Alice with the same timestamp, the 
bank calls the police. Bob then spends 15 years in Leavenworth prison reading up on 
cryptographic protocols. 

Signing Documents with Public-Key Cryptography 
and One-Way l-lash Functions 

In practical implementations, public-key algorithms are often too inefficient to 
sign long documents. To save time, digital signature protocols are often imple- 
mented with one-way hash functions [432,433]. Instead of signing a document, 
Alice signs the hash of the document. In this protocol, both the one-way hash func- 
tion and the digital signature algorithm are agreed upon beforehand. 

(1) Alice produces a one-way hash of a document. 
(2) Alice encrypts the hash with her private key, thereby signing the docu- 

ment. 
(3) Alice sends the document and the signed hash to Bob. 
(4) Bob produces a one-way hash of the document that Alice sent. He then, 

using the digital signature algorithm, decrypts the signed hash with Alice’s 
public key. If the signed hash matches the hash he generated, the signature 
is valid. 

Speed increases drastically and, since the chances of two different documents hav- 
ing the same 160-bit hash are only one in 2160, anyone can safely equate a signature 
of the hash with a signature of the document. If a non-one-way hash function were 
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used, it would be an easy matter to create multiple documents that hashed to the 
same value, so that anyone signing a particular document would be duped into sign- 
ing a multitude of documents. 

This protocol has other benefits. First, the signature can be kept separate from the 
document. Second, the recipient’s storage requirements for the document and sig- 
nature are much smaller. An archival system can use this type of protocol to verify 
the existence of documents without storing their contents. The central database 
could just store the hashes of files. It doesn’t have to see the files at all; users submit 
their hashes to the database, and the database timestamps the submissions and 
stores them. If there is any disagreement in the future about who created a docu- 
ment and when, the database could resolve it by finding the hash in its files. This 
system has vast implications concerning privacy: Alice could copyright a document 
but still keep the document secret. Only if she wished to prove her copyright would 
she have to make the document public. (See Section 4.1). 

Algorithms and Terminology 

There are many digital signature algorithms. All of them are public-key algo- 
rithms with secret information to sign documents and public information to verify 
signatures. Sometimes the signing process is called encrypting with a private key 
and the verification process is called decrypting with a public key. This is mislead- 
ing and is only true for one algorithm, RSA. And different algorithms have different 
implementations. For example, one-way hash functions and timestamps sometimes 
add extra steps to the process of signing and verifying. Many algorithms can be used 
for digital signatures, but not for encryption. 

In general, I will refer to the signing and verifying processes without any details of 
the algorithms involved. Signing a message with private key K is: 

SK(M) 

and verifying a signature with the corresponding public key is: 

VK(MI 

The bit string attached to the document when signed (in the previous example, 
the one-way hash of the document encrypted with the private key) will be called the 
digital signature, or just the signature. The entire protocol, by which the receiver of 
a message is convinced of the identity of the sender and the integrity of the message, 
is called authentication. Further details on these protocols are in Section 3.2. 

Multiple Signatures 

How could Alice and Bob sign the same digital document? Without one-way hash 
functions, there are two options. One is that Alice and Bob sign separate copies of 
the document itself. The resultant message would be over twice the size of the orig- 
inal document. The second is that Alice signs the document first and then Bob signs 
Alice’s signature. This works, but it is impossible to verify Alice’s signature without 
also verifying Bob’s. 
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With one-way hash functions, multiple signatures are easy: 

(1) Alice signs the hash of the document. 
(2) Bob signs the hash of the document. 
(3) Bob sends his signature to Alice. 
(4) Alice sends the document, her signature, and Bob’s signature to Carol. 
(5) Carol verifies both Alice’s signature and Bob’s signature. 

Alice and Bob can do steps (1) and (2) either in parallel or in series. In step (5) 
Carol can verify one signature without having to verify the other. 

Nonrepudiation and Digital Signatures 

Alice can cheat with digital signatures and there’s nothing that can be done about 
it. She can sign a document and then later claim that she did not. First, she signs the 
document normally. Then, she anonymously publishes her private key, conve- 
niently loses it in a public place, or just pretends to do either one. Alice then claims 
that her signature has been compromised and that others are using it, pretending to 
be her. She disavows signing the document and any others that she signed using that 
private key. This is called repudiation, 

Timestamps can limit the effects of this kind of cheating, but Alice can always 
claim that her key was compromised earlier. If Alice times things well, she can sign 
a document and then successfully claim that she didn’t. This is why there is so 
much talk about private keys buried in tamper-resistant modules-so that Alice 
can’t get at hers and abuse it. 

Although nothing can be done about this possible abuse, one can take steps to 
guarantee that old signatures are not invalidated by actions taken in disputing new 
ones. (For example, Alice could “lose” her key to keep from paying Bob for the junk 
car he sold her yesterday and, in the process, invalidate her bank account.) The solu- 
tion is for the receiver of a signed document to have it timestamped [453]. 

The general protocol is given in [28]: 

(1) Alice signs a message. 
(2) Alice generates a header containing some identifying information. She 

concatenates the header with the signed message, signs that, and sends it 
to Trent. 

(3) Trent verifies the outside signature and confirms the identifying informa- 
tion. He adds a timestamp to Alice’s signed message and the identifying 
information. Then he signs it all and sends it to both Alice and Bob. 

(4) Bob verifies Trent’s signature, the identifying information, and Alice’s sig- 
nature. 

(5) Alice verifies the message Trent sent to Bob. If she did not originate the 
message, she speaks up quickly. 
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Another scheme uses Trent after the fact [209]. After receiving a signed message, 
Bob can send a copy to Trent for verification. Trent can attest to the validity of 
Alice’s signature. 

Applications of Digital Signatures 

One of the earliest proposed applications of digital signatures was to facilitate the 
verification of nuclear test ban treaties [ 1454,1467]. The United States and the Soviet 
Union (anyone remember the Soviet Union?) permitted each other to put seis- 
mometers on the other’s soil to monitor nuclear tests. The problem was that each 
country needed to assure itself that the host nation was not tampering with the data 
from the monitoring nation’s seismometers. Simultaneously, the host nation needed 
to assure itself that the monitor was sending only the specific information needed 
for monitoring. 

Conventional authentication techniques can solve the first problem, but only dig- 
ital signatures can solve both problems. The host nation can read, but not alter, data 
from the seismometer, and the monitoring nation knows that the data has not been 
tampered with. 

2.7 DIGITAL SIGNATURES WITH ENCRYPTION 

By combining digital signatures with public-key cryptography, we develop a protocol 
that combines the security of encryption with the authenticity of digital signatures. 
Think of a letter from your mother: The signature provides proof of authorship and 
the envelope provides privacy. 

(1) Alice signs the message with her private key. 

SAM 
(2) Alice encrypts the signed message with Bob’s public key and sends it to Bob. 

EB(SAW 
(3) Bob decrypts the message with his private key. 

&&%I(SA(W)) = SA(MI 
(4) Bob verifies with Alice’s public key and recovers the message. 

VA(SA(M)) = M 
Signing before encrypting seems natural. When Alice writes a letter, she signs it 

and then puts it in an envelope. If she put the letter in the envelope unsigned and 
then signed the envelope, then Bob might worry if the letter hadn’t been covertly 
replaced. If Bob showed to Carol Alice’s letter and envelope, Carol might accuse Bob 
of lying about which letter arrived in which envelope. 

In electronic correspondence as well, signing before encrypting is a prudent prac- 
tice [48]. Not only is it more secure-an adversary can’t remove a signature from an 
encrypted message and add his own-but there are legal considerations: If the text 
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to be signed is not visible to the signer when he affixes his signature, then the sig- 
nature may have little legal force [ 13121. And there are some cryptanalytic attacks 
against this technique with RSA signatures (see Section 19.3). 

There’s no reason Alice has to use the same public-key/private-key key pair for 
encrypting and signing. She can have two key pairs: one for encryption and the other 
for signatures. Separation has its advantages: she can surrender her encryption key 
to the police without compromising her signature, one key can be escrowed (see 
Section 4.13) without affecting the other, and the keys can have different sizes and 
can expire at different times. 

Of course, timestamps should be used with this protocol to prevent reuse of mes- 
sages. Timestamps can also protect against other potential pitfalls, such as the one 
described below. 

Resending the Message as a Receipt 

Consider an implementation of this protocol, with the additional feature of con- 
firmation messages. Whenever Bob receives a message, he returns it as a confirma- 
tion of receipt. 

(1) Alice signs a message with her private key, encrypts it with Bob’s public 
key, and sends it to Bob. 

EBPAUW 
(2) Bob decrypts the message with his private key and verifies the signature 

with Alice’s public key, thereby verifying that Alice signed the message 
and recovering the message. 

VADBPB(SAVW~ = M 
(3) Bob signs the message with his private key, encrypts it with Alice’s public 

key, and sends it back to Alice. 

E4%(Mll 
(4) Alice decrypts the message with her private key and verifies the signature 

with Bob’s public key. If the resultant message is the same one she sent to 
Bob, she knows that Bob received the message accurately. 

If the same algorithm is used for both encryption and digital-signature verification 
there is a possible attack [506]. In these cases, the digital signature operation is the 
inverse of the encryption operation: V, = Ex and Sx = DX. 

Assume that Mallory is a legitimate system user with his own public and private 
key. Now, let’s watch as he reads Bob’s mail. First, he records Alice’s message to Bob 
in step (1). Then, at some later time, he sends that message to Bob, claiming that it 
came from him (Mallory). Bob thinks that it is a legitimate message from Mallory, 
so he decrypts the message with his private key and then tries to verify Mallory’s 
signature by decrypting it with Mallory’s public key. The resultant message, which 
is pure gibberish, is: 

E.&B(EB(DA(M)))) = EMDA(W 
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Even so, Bob goes on with the protocol and sends Mallory a receipt: 

E~~B(~DA(W)) 

Now, all Mallory has to do is decrypt the message with his private key, encrypt it 
with Bob’s public key, decrypt it again with his private key, and encrypt it with 
Alice’s public key. Voilh! Mallory has M. 

It is not unreasonable to imagine that Bob may automatically send Mallory a 
receipt. This protocol may be embedded in his communications software, for exam- 
ple, and send receipts automatically. It is this willingness to acknowledge the receipt 
of gibberish that creates the insecurity. If Bob checked the message for comprehensi- 
bility before sending a receipt, he could avoid this security problem. 

There are enhancements to this attack that allow Mallory to send Bob a different 
message from the one he eavesdropped on. Never sign arbitrary messages from other 
people or decrypt arbitrary messages and give the results to other people. 

Foiling the Resend Attack 

The attack just described works because the encrypting operation is the same as 
the signature-verifying operation and the decryption operation is the same as the 
signature operation. A secure protocol would use even a slightly different operation 
for encryption and digital signatures. Using different keys for each operation solves 
the problem, as does using different algorithms for each operation; as do time- 
stamps, which make the incoming message and the outgoing message different; as 
do digital signatures with one-way hash functions (see Section 2.6). 

In general, then, the following protocol is secure as the public-key algorithm used: 

(1) Alice signs a message. 
(2) Alice encrypts the message and signature with Bob’s public key (using a 

different encryption algorithm than for the signature) and sends it to Bob. 
(3) Bob decrypts the message with his private key. 
(4) Bob verifies Alice’s signature. 

Attacks against Public-Key Cryptography 

In all these public-key cryptography protocols, I glossed over how Alice gets Bob’s 
public key. Section 3.1 discusses this in detail, but it is worth mentioning here. 

The easiest way to get someone’s public key is from a secure database some- 
where. The database has to be public, so that anyone can get anyone else’s public 
key. The database also has to be protected from write-access by anyone except 
Trent; otherwise Mallory could substitute any public key for Bob’s. After he did 
that, Bob couldn’t read messages addressed to him, but Mallory could. 

Even if the public keys are stored in a secure database, Mallory could still substi- 
tute one for another during transmission. To prevent this, Trent can sign each pub- 
lic key with his own private key. Trent, when used in this manner, is often known 
as a Key Certification Authority or Key Distribution Center (KDC). In practical 
implementations, the KDC signs a compound message consisting of the user’s 
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name, his public key, and any other important information about the user. This 
signed compound message is stored in the KDC’s database. When Alice gets Bob’s 
key, she verifies the KDC’s signature to assure herself of the key’s validity. 

In the final analysis, this is not making things impossible for Mallory, only more 
difficult. Alice still has the KDC’s public key stored somewhere. Mallory would 
have to substitute his own public key for that key, corrupt the database, and substi- 
tute his own keys for the valid keys (all signed with his private key as if he were the 
KDC), and then he’s in business. But, even paper-based signatures can be forged if 
Mallory goes to enough trouble. Key exchange will be discussed in minute detail in 
Section 3.1. 

2.8 RANDOM AND PSEUDO-RANDOM-SEQUENCE GENERATION 

Why even bother with random-number generation in a book on cryptography? 
There’s already a random-number generator built into most every compiler, a mere 
function call away. Why not use that? Unfortunately, those random-number gener- 
ators are almost definitely not secure enough for cryptography, and probably not 
even very random. Most of them are embarrassingly bad. 

Random-number generators are not random because they don’t have to be. Most 
simple applications, like computer games, need so few random numbers that they 
hardly notice. However, cryptography is extremely sensitive to the properties of 
random-number generators. Use a poor random-number generator and you start get- 
ting weird correlations and strange results [ 123 1,1238]. If you are depending on your 
random-number generator for security, weird correlations and strange results are 
the last things you want. 

The problem is that a random-number generator doesn’t produce a random 
sequence. It probably doesn’t produce anything that looks even remotely like a ran- 
dom sequence. Of course, it is impossible to produce something truly random on a 
computer. Donald Knuth quotes John von Neumann as saying: “Anyone who con- 
siders arithmetical methods of producing random digits is, of course, in a state of sin” 
[863]. Computers are deterministic beasts: Stuff goes in one end, completely pre- 
dictable operations occur inside, and different stuff comes out the other end. Put the 
same stuff in on two separate occasions and the same stuff comes out both times. Put 
the same stuff into two identical computers, and the same stuff comes out of both of 
them. A computer can only be in a finite number of states (a large finite number, but 
a finite number nonetheless), and the stuff that comes out will always be a deter- 
ministic function of the stuff that went in and the computer’s current state. That 
means that any random-number generator on a computer (at least, on a finite-state 
machine) is, by definition, periodic. Anything that is periodic is, by definition, pre- 
dictable. And if something is predictable, it can’t be random. A true random-number 
generator requires some random input; a computer can’t provide that. 

Pseudo-Random Sequences 

The best a computer can produce is a pseudo-random-sequence generator. What’s 
that? Many people have taken a stab at defining this formally, but I’ll hand-wave 
here. A pseudo-random sequence is one that looks random. The sequence’s period 
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should be long enough so that a finite sequence of reasonable length-that is, one 
that is actually used-is not periodic. If you need a billion random bits, don’t choose 
a sequence generator that repeats after only sixteen thousand bits. These relatively 
short nonperiodic subsequences should be as indistinguishable as possible from 
random sequences. For example, they should have about the same number of ones 
and zeros, about half the runs (sequences of the same bit) should be of length one, 
one quarter of length two, one eighth of length three, and so on. They should not be 
compressible. The distribution of run lengths for zeros and ones should be the same 
[643,863,99,1357]. These properties can be empirically measured and then com- 
pared to statistical expectations using a chi-square test. 

For our purposes, a sequence generator is pseudo-random if it has this property: 

1. It looks random. This means that it passes all the statistical tests of ran- 
domness that we can find. (Start with the ones in [863].) 

A lot of effort has gone into producing good pseudo-random sequences on com- 
puter. Discussions of generators abound in the academic literature, along with vari- 
ous tests of randomness. All of these generators are periodic (there’s no escaping 
that); but with potential periods of 2 256 bits and higher, they can be used for the 
largest applications. 

The problem is still those weird correlations and strange results. Every pseudo- 
random-sequence generator is going to produce them if you use them in a certain 
way. And that’s what a cryptanalyst will use to attack the system. 

Cryptographically Secure Pseudo-Random Sequences 

Cryptographic applications demand much more of a pseudo-random-sequence 
generator than do most other applications. Cryptographic randomness doesn’t mean 
just statistical randomness, although that’s part of it. For a sequence to be crypto- 
graphically secure pseudo-random, it must also have this property: 

2. It is unpredictable. It must be computationally infeasible to predict what 
the next random bit will be, given complete knowledge of the algorithm or 
hardware generating the sequence and all of the previous bits in the stream. 

Cryptographically secure pseudo-random sequences should not be compress- 
ible . . . unless you know the key. The key is generally the seed used to set the initial 
state of the generator. 

Like any cryptographic algorithm, cryptographically secure pseudo-random- 
sequence generators are subject to attack. Just as it is possible to break an encryption 
algorithm, it is possible to break a cryptographically secure pseudo-random-sequence 
generator. Making generators resistant to attack is what cryptography is all about. 

Real Random Sequences 

Now we’re drifting into the domain of philosophers. Is there such a thing as ran- 
domness? What is a random sequence? How do you know if a sequence is random? Is 
“101110100” more random than “101010101”? Quantum mechanics tells us that 
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there is honest-to-goodness randomness in the real world. But can we preserve that 
randomness in the deterministic world of computer chips and finite-state machines? 

Philosophy aside, from our point of view a sequence generator is real random if it 
has this additional third property: 

3. It cannot be reliably reproduced. If you run the sequence generator twice 
with the exact same input (at least as exact as humanly possible), you will 
get two completely unrelated random sequences. 

The output of a generator satisfying these three properties will be good enough for 
a one-time pad, key generation, and any other cryptographic applications that 
require a truly random sequence generator. The difficulty is in determining whether 
a sequence is really random. If I repeatedly encrypt a string with DES and a given 
key, I will get a nice, random-looking output; you won’t be able to tell that it’s non- 
random unless you rent time on the NSA’s DES cracker. 
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