
1

SQL: Part III

CPS 196.3

Introduction to Database Systems

2

�Active� data

! Constraint enforcement: When a transaction
violates a constraint, abort the transaction or try to
�fix� the data
" Example: enforcing referential integrity constraints

" Generalize to arbitrary constraints?

! Data monitoring: When something happens to the
data, automatically execute some action
" Example: When price rises above $20 per share, sell

" Example: When enrollment is at the limit and more
students try to register, email the instructor

3

Triggers

! A trigger is an event-condition-action rule
" When event occurs, test condition; if condition is

satisfied, execute action

! Example:
" Event: whenever there comes a new student�

" Condition: with GPA higher than 3.0�

" Action: then make him/her take CPS196!

4

Trigger example

CREATE TRIGGER CPS196AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW ROW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll

VALUES(newStudent.SID, �CPS196�);

Event

Condition

Action

5

Trigger options

! Possible events include:
" INSERT ON table
" DELETE ON table
" UPDATE [OF column] ON table

! Trigger can be activated:
" FOR EACH ROW modified

" FOR EACH STATEMENT that performs modification

! Action can be executed:
" AFTER or BEFORE the triggering event

6

Transition variables
! OLD ROW: the modified row before the triggering event
! NEW ROW: the modified row after the triggering event
! OLD TABLE: a hypothetical read-only table containing all

modified rows before the triggering event
! NEW TABLE: a hypothetical table containing all modified

rows after the triggering event
! Not all of them make sense all the time, e.g.

" AFTER INSERT statement-level triggers
� Can use only NEW TABLE

" BEFORE DELETE row-level triggers
� Can use only OLD ROW

" etc.

2

7

Statement-level trigger example

CREATE TRIGGER CPS196AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll
(SELECT SID, �CPS196�
FROM newStudents
WHERE GPA > 3.0);

8

Another statement-level trigger

! Give faculty a raise if GPA�s in one update statement are all
increasing

CREATE TRIGGER AutoRaise
AFTER UPDATE OF GPA ON Student
REFERENCING OLD TABLE AS o, NEW TABLE AS n
FOR EACH STATEMENT
WHEN (NOT EXISTS(SELECT * FROM o, n

WHERE o.SID = n.SID
AND o.GPA >= n.GPA))

UPDATE Faculty SET salary = salary + 1000;
! A row-level trigger would be difficult to write in this case

9

BEFORE trigger example

! Never give faculty more than 50% raise in one update

CREATE TRIGGER NotTooGreedy
BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;

! BEFORE triggers are often used to �condition� data

! Another option is to raise an error in the trigger body to
abort the transaction that caused the trigger to fire

10

System issues

! Recursive firing of triggers
" Action of one trigger causes another trigger to fire

" Can get into an infinite loop
� Some DBMS restrict trigger actions

� Most DBMS set a maximum level of recursion (16 in DB2)

! Interaction with constraints (very tricky to get right!)
" When do we check if a triggering event violates constraints?

� After a BEFORE trigger (so the trigger can fix a potential violation)

� Before an AFTER trigger

" AFTER triggers also see the effects of, say, cascaded deletes caused
by referential integrity constraint violations

(Based on DB2; other DBMS may implement a different policy!)

11

Views

! A view is like a �virtual� table
" Defined by a query, which describes how to compute the

view contents on the fly

" DBMS stores the view definition query instead of view
contents

" Can be used in queries just like a regular table

12

Creating and dropping views

! Example: CPS196 roster
" CREATE VIEW CPS196Roster AS
SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = �CPS196�);

! To drop a view
" DROP VIEW view_name;

Called �base tables�

3

13

Using views in queries

! Example: find the average GPA of CPS196 students
" SELECT AVG(GPA) FROM CPS196Roster;
" To process the query, replace the reference to the view by

its definition

" SELECT AVG(GPA)
FROM (SELECT SID, name, age, GPA

FROM Student
WHERE SID IN (SELECT SID

FROM Enroll
WHERE CID = �CPS196�));

14

Why use views?

! To hide data from users

! To hide complexity from users

! Logical data independence
" If applications deal with views, we can change the

underlying schema without affecting applications

" Recall physical data independence: change the physical
organization of data without affecting applications

#Real database applications use tons of views

15

Modifying views

! Does not seem to make sense since views are virtual

! But does make sense if that is how users see the
database

! Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

16

A simple case

CREATE VIEW StudentGPA AS
SELECT SID, GPA FROM Student;

DELETE FROM StudentGPA WHERE SID = 123;

translates to:

DELETE FROM Student WHERE SID = 123;

17

An impossible case

CREATE VIEW HighGPAStudent AS
SELECT SID, GPA FROM Student
WHERE GPA > 3.7;

INSERT INTO HighGPAStudent
VALUES(987, 2.5);

! No matter what you do on Student, the inserted row
will not be in HighGPAStudent

18

A case with too many possibilities

CREATE VIEW AverageGPA(GPA) AS
SELECT AVG(GPA) FROM Student;
" Note that you can rename columns in view definition

UPDATE AverageGPA SET GPA = 2.5;

! Set everybody�s GPA to 2.5?

! Adjust everybody�s GPA by the same amount?

! Just lower Bart�s GPA?

4

19

SQL92 updateable views

! Single-table SFW
" No aggregation

" No subqueries

! Overly restrictive

! Still might get it wrong in some cases
" See the slide titled �An impossible case�

20

Indexes

! An index is an auxiliary persistent data structure
" Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.

More on indexes in the second half of this course!

! An index on R.A can speed up accesses of the form
" R.A = value

" R.A > value (sometimes; depending on the index type)

! An index on { R.A1, �, R.An } can speed up
" R.A1 = value1 ∧� ∧ R.An = valuen

Is an index on { R.A, R.B } equivalent to an index on R.A
plus another index on R.B?

21

Examples of using indexes

! SELECT * FROM Student WHERE name = �Bart�
" Without an index on Student.name: must scan the entire table if

we store Student as a flat file of unordered rows
" With index: go �directly� to rows with name = �Bart�

! SELECT * FROM Student, Enroll
WHERE Student.SID = Enroll.SID;
" Without any index: for each Student row, scan the entire Enroll

table for matching SID
� Sorting could help

" With an index on Enroll.SID: for each Student row, directly look up
Enroll rows with matching SID

22

Creating and dropping indexes in SQL

! CREATE [UNIQUE] INDEX index_name ON
table_name(column_name1, �, column_namen);
" With UNIQUE, the DBMS will also enforce that

{column_name1, �, column_namen} is a key of table_name

! DROP INDEX index_name;

! Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint
declarations

23

Choosing indexes to create

More indexes = better performance?

! Indexes take space

! Indexes have one more level of indirection

! Indexes need to be maintained when data is updated

#Optimal index selection depends on both query and
update workload and the size of tables
" Automatic index selection is still an area of active

research

24

Summary of SQL features covered so far

! Query

! Modification

! Constraints

! Triggers

! Views

! Indexes

#Next: transactions

