
1

SQL: Transactions

CPS 196.3

Introduction to Database Systems

2

Transactions

! A transaction is a sequence of database operations 
with the following properties (ACID):
" Atomic: Operations of a transaction are executed all-or-

nothing, and are never left �half-done�
" Consistency: Assume all database constraints are satisfied 

at the start of a transaction, they should remain satisfied 
at the end of the transaction

" Isolation: Transactions must behave as if they were 
executed in complete isolation from each other

" Durability: If the DBMS crashes after a transaction 
commits, all effects of the transaction must remain in the 
database when DBMS comes back up

3

SQL transactions
! A transaction is automatically started when a user executes 

an SQL statement
! Subsequent statements in the same session are executed as 

part of this transaction
" These statements can see the changes made by earlier statements 

in this transaction
" Statements in other concurrently running transactions should not

see these changes

! COMMIT command commits the transaction
" Its effects are made final and visible to subsequent transactions

! ROLLBACK command aborts the transaction
" Its effects are undone

4

Fine prints

! Schema operations (e.g., CREATE TABLE) implicitly 
commit the current transaction
" Because it is often difficult to undo a schema operation

! Sometime you need to turn off a feature called 
AUTOCOMMIT, which automatically commits every 
single statement
" Example: Run DB2�s db2 command-line processor with 

the option +c
" More examples to come when we cover database API�s

5

Atomicity

! Partial effects of a transaction must be undone when
" User explicitly aborts the transaction using ROLLBACK

� Application asks for user confirmation in the last step and 
issues COMMIT or ROLLBACK depending on the response 

" An error, exception, or constraint violation occurs during 
a transaction

" The DBMS crashes before a transaction commits

! How is atomicity achieved?
" Logging

6

Isolation

! Transactions must appear to be executed in a serial 
schedule (with no interleaving operations)

! For performance, DBMS executes transactions using 
a serializable schedule
" In this schedule, operations from different transactions 

can interleave and execute concurrently

" But the schedule is guaranteed to produce the same 
effects as a serial schedule

! How is isolation achieved?
" Locking, multi-version concurrency control, etc.



2

7

Consistency

! Consistency of the database is guaranteed by 
constraints and triggers declared in the database 
and/or transactions themselves
" When inconsistency arises, abort the transaction or fix 

the inconsistency within the transaction

8

Durability

! Effects of committed transactions must survive 
DBMS crashes

! How is durability achieved?
" DBMS manipulates data in memory; forcing all changes 

to disk at the end of every transaction is very expensive

" Logging

9

SQL isolation levels

! Strongest isolation level: SERIALIZABLE
" Complete isolation

" SQL default

! Weaker isolation levels: REPEATABLE READ, READ
COMMITTED, READ UNCOMMITTED
" Increase performance by eliminating overhead and 

allowing higher degrees of concurrency

" Trade-off: sometimes you get the �wrong� answer

10

Example schema

! CREATE TABLE Account
(accno INTEGER NOT NULL PRIMARY KEY,
name CHAR(30) NOT NULL,
balance FLOAT NOT NULL CHECK(balance >= 0));

11

READ UNCOMMITTED
! Can read �dirty� data

" A data item is dirty if it is written by an uncommitted transaction

! Problem: What if the transaction that wrote the dirty data 
eventually aborts?

! Example: wrong average
" -- T1: -- T2:
UPDATE Account
SET balance = balance � 200
WHERE accno = 142857; SELECT AVG(balance)

FROM Account;
ROLLBACK;

COMMIT;

12

READ COMMITTED
! No dirty reads, but non-repeatable reads possible

" Reading the same data item twice can produce different results

! Example: different averages
" -- T1: -- T2:

SELECT AVG(balance)
FROM Account;

UPDATE Account
SET balance = balance � 200
WHERE accno = 142857;
COMMIT;

SELECT AVG(balance)
FROM Account;
COMMIT;



3

13

REPEATABLE READ

! Reads are repeatable, but may see phantoms

! Example: different average (still!)
" -- T1: -- T2:

SELECT AVG(balance)
FROM Account;

INSERT INTO Account
VALUES(428571, 1000);
COMMIT;

SELECT AVG(balance)
FROM Account;
COMMIT;

14

Summary of SQL isolation levels

! Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL isolation_level
[READ ONLY|READ WRITE];
" READ UNCOMMITTED can only be READ ONLY

! Criticized recently for definition in terms of anomalies
" Berenson, Bernstein, Gray, et al. �A critique of ANSI SQL 

isolation levels,� SIGMOD 1995

ImpossibleImpossibleImpossibleSERIALIZABLE
PossibleImpossibleImpossibleREPEATABLE READ
PossiblePossibleImpossibleREAD COMMITTED
PossiblePossiblePossibleREAD UNCOMMITTED
PhantomsNon-repeatable readsDirty readsIsolation level/anomaly


