
1

SQL: Programming

CPS 196.3

Introduction to Database Systems

2

Motivation

! Pros and cons of SQL
" Very high-level, possible to optimize

" Not intended for general-purpose computation

! Solutions
" Augment SQL with constructs from general-purpose

programming languages (SQL/PSM)

" Use SQL together with general-purpose programming
languages (JDBC, embedded SQL, etc.)

3

JDBC

! JDBC (Java DataBase Connectivity) is an API that allows a
Java program to access databases

�
// Use the JDBC package:
import java.sql.*;
�
public class � {

�
static {

// Load the JDBC driver:
Class.forName(�COM.ibm.db2.jdbc.net.DB2Driver�);
�

}
�

}

4

Connections
�
// Connection URL is a DBMS-specific string:
String url =

�jdbc:db2://rack40.cs.duke.edu/cps116�;
// Making a connection:
Connection con =

DriverManager.getConnection(url);
�
// Closing a connection:
con.close();
�

5

Statements
�
// Create an object for sending SQL statements:
Statement stmt = con.createStatement();
// Execute a query and get its results:
ResultSet rs =

stmt.executeQuery(�SELECT SID, name FROM Student�);
// Work on the results:
�
// Execute a modification (returns the number of rows affected):
int rowsUpdated =

stmt.executeUpdate
(�UPDATE Student SET name = �Barney� WHERE SID = 142�);

// Close the statement:
stmt.close();
�

6

Query results
�
// Execute a query and get its results:
ResultSet rs =

stmt.executeQuery(�SELECT SID, name FROM Student�);
// Loop through all result rows:
while (rs.next()) {

// Get column values:
int sid = rs.getInt(1);
String name = rs.getString(2);
// Work on sid and name:
�

}
// Close the ResultSet:
rs.close();
�

2

7

Other ResultSet features

! Move the cursor (pointing to the current row)
backwards and forwards, or position it anywhere
within the ResultSet

! Update/delete the database row corresponding to
the current result row
" Analogous to the view update problem

! Insert a row into the database
" Analogous to the view update problem

8

Prepared statements: motivation
�
Statement stmt = con.createStatement();
for (int age=0; age<100; age+=10) {

ResultSet rs = stmt.executeQuery
(�SELECT AVG(GPA) FROM Student� +
� WHERE age >= � + age + � AND age < � + (age+10));

// Work on the results:
�

}
�

! Every time an SQL string is sent to the DBMS, the DBMS
must perform parsing, semantic analysis, optimization,
compilation, and then finally execution

! These costs are incurred 10 times in the above example,
even though all strings are essentially the same query (with
different parameter values)

9

Prepared statements: syntax
�
// Prepare the statement, using ? as placeholders for actual parameters:
PreparedStatement stmt = con.prepareStatement

(�SELECT AVG(GPA) FROM Student WHERE age >= ? AND age < ?�);
for (int age=0; age<100; age+=10) {

// Set actual parameter values:
stmt.setInt(1, age);
stmt.setInt(2, age+10);
ResultSet rs = stmt.executeQuery();
// Work on the results:
�

}
�

! The DBMS performs parsing, semantic analysis,
optimization, and compilation only once, when it prepares
the statement

! At execution time, the DBMS only needs to check
parameter types and validate the compiled execution plan

10

Transaction processing
! Set isolation level for the current transaction

" con.setTransactionIsolationLevel(l);
" Where l is one of TRANSACTION_SERIALIZABLE (default),

TRANSACTION_REPEATABLE_READ, TRANSACTION_READ_COMITTED, and
TRANSACTION_READ_UNCOMMITTED

! Set the transaction to be read-only or read/write (default)
" con.setReadOnly(true|false);

! Turn on/off AUTOCOMMIT (commits every single statement)
" con.setAutoCommit(true|false);

! Commit/rollback the current transaction (when
AUTOCOMMIT is off)
" con.commit();
" con.rollback();

11

Odds and ends of JDBC

! Most methods can throw SQLException
" Make sure your code catches them
" getSQLState() returns the standard SQL error code

" getMessage() returns the error message

! Methods for examining metadata in databases

! Methods to retrieve the value of a column for all result rows
into an array without calling ResultSet.next() in a loop

! Methods to construct and execute a batch of SQL
statements together

! �

12

JDBC drivers � Types I, II

! Type I (bridge): translate JDBC calls to a standard
API not native to the DBMS (e.g., JDBC-ODBC
bridge)
" Driver is easy to build using existing standard API�s

" Extra layer of API adds overhead

! Type II (native API, partly Java): translates JDBC
calls to DBMS-specific client API calls
" DBMS-specific client library needs to be installed on

each client

" Good performance

3

13

JDBC drivers � Types III, IV

! Type III (network bridge): sends JDBC requests to a
middleware server which in turn communicates with a
database
" Client JDBC driver is completely Java, easy to build, and does not

need to be DBMS-specific

" Middleware adds translation overhead

! Type IV (native protocol, full Java): converts JDBC
requests directly to native network protocol of the DBMS
" Client JDBC driver is completely Java but is also DBMS-specific

" Good performance

14

Other database programming methods

! API approach
" SQL commands are sent to the DBMS at runtime

" Examples: JDBC, ODBC (for C/C++/VB), Perl DBI

" These API�s are all based on the SQL/CLI (Call-Level
Interface) standard

! Embedded SQL approach
" SQL commands are embedded in application code

" A precompiler checks these commands at compile-time
and convert them into DBMS-specific API calls

" Examples: embedded SQL for C/C++, SQLJ (for Java)

15

Embedded C example
�
/* Declare variables to be �shared� between the application

and the DBMS: */
EXEC SQL BEGIN DECLARE SECTION;
int thisSID; float thisGPA;
EXEC SQL END DECLARE SECTION;
/* Declare a cursor: */
EXEC SQL DECLARE CPS196Student CURSOR FOR

SELECT SID, GPA FROM Student
WHERE SID IN

(SELECT SID FROM Enroll WHERE CID = �CPS196�)
FOR UPDATE;

�

16

Embedded C example continued
/* Open the cursor: */
EXEC SQL OPEN CPS196Student;
/* Specify exit condition: */
EXEC SQL WHENEVER NOT FOUND DO break;
/* Loop through result rows: */
while (1) {

/* Get column values for the current row: */
EXEC SQL FETCH CPS196Student INTO :thisSID, :thisGPA;
printf(�SID %d: current GPA is %f\n�, thisSID, thisGPA);
/* Update GPA: */
printf(�Enter new GPA: �);
scanf(�%f�, &thisGPA);
EXEC SQL UPDATE Student SET GPA = :thisGPA

WHERE CURRENT OF CPS196Student;
}
/* Close the cursor: */
EXEC SQL CLOSE CPS196Student;

17

Pros and cons of embedded SQL

! Pros
" More compile-time checking (syntax, type, schema, �)

" Code could be more efficient (if the embedded SQL
statements do not need to checked and recompiled at
run-time)

! Cons
" DBMS-specific

� Vendors have different precompilers which translate code into
different native API�s

� Application executable is not portable (although code is)

� Application cannot talk to different DBMS at the same time

18

SQL/PSM stored procedures/functions

! CREATE PROCEDURE proc_name (parameter_declarations)
local_declarations
procedure_body;

! CREATE FUNCTION func_name (parameter_declarations)
RETURNS return_type
local_declarations
procedure_body;

! CALL proc_name (parameters);
! Inside procedure body:
SET variable = CALL func_name (parameters);

4

19

SQL/PSM example
CREATE FUNCTION SetMaxGPA(IN newMaxGPA FLOAT)

RETURNS INT
-- Enforce newMaxGPA; return number of rows modified.

BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisGPA FLOAT;
-- A cursor to range over all students:
DECLARE studentCursor CUSOR FOR

SELECT GPA FROM Student
FOR UPDATE;
-- Set a flag whenever there is a �not found� exception:
DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET noMoreRows = 1;
� (see next slide) �
RETURN rowsUpdated;

END

20

SQL/PSM example continued
-- Fetch the first result row:
OPEN studentCursor;
FETCH FROM studentCursor INTO thisGPA;
-- Loop over all result rows:
WHILE noMoreRows <> 1 DO

IF GPA > newMaxGPA THEN
-- Enforce newMaxGPA:
UPDATE Student SET Student.GPA = newMaxGPA
WHERE CURRENT OF studentCursor;
-- Update count:
SET rowsUpdated = rowsUpdated + 1;

END IF;
-- Fetch the next result row:
FETCH FROM studentCursor INTO thisGPA;

END WHILE;
CLOSE studentCursor;

21

Other SQL/PSM features

! Assignment using scalar query results
" SELECT INTO

! Other loop constructs
" FOR, REPEAT UNTIL, LOOP

! Flow control
" GOTO

! Exceptions
" SIGNAL, RESIGNAL

