
1

SQL: Recursion

CPS 196.3

Introduction to Database Systems

2

A motivating example

! Example: find Bart�s ancestors

! �Ancestor� has a recursive definition
" X is Y�s ancestor if

�X is Y�s parent, or

�X is Z�s ancestor and Z is Y�s ancestor

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Parent (parent, child)

Bart Lisa

MargeHomer

Abe

Ape

3

Recursion in SQL

! SQL2 had no recursion
" You can find Bart�s parents, grandparents, great 

grandparents, etc.

" But you cannot find all his ancestors with a single query

! SQL3 introduces recursion
" WITH clause

" Implemented in DB2 (called common table expressions)



2

4

Ancestor query in SQL3

WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = �Bart�;

Query using the relation
defined in WITH clause

Define a
a relation
recursively

How do we compute such a recursive query?

5

Fixed point of a function

! If f: T→ T is a function from a type T to itself, a 
fixed point of f is a value x such that f(x) = x

! Example: What is the fixed point of f(x) = x / 2?

! To compute a fixed point of f
" Start with a �seed�: x← x0

" Compute f(x)
� If f(x) = x, stop; x is fixed point of f
� Otherwise, x← f(x); repeat

! Example: compute the fixed point of f(x) = x / 2
" With seed 1:

6

Fixed point of a query

! A query q is just a function that maps an input table 
to an output table, so a fixed point of q is a table T
such that q(T) = T

! To compute fixed point of q
" Start with an empty table: T← ∅
" Evaluate q over T

� If the result is identical to T, stop; T is a fixed point

� Otherwise, let T be the new result; repeat

#Starting from ∅ produces the unique minimal fixed 
point (assuming q is monotonic)



3

7

Finding ancestors
WITH Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

! Think of it as Ancestor = q(Ancestor)

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Parent (parent, child)

anc desc anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer

anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer
Ape Bart
Ape Lisa

8

Intuition behind fixed-point iteration

! Initially, we know nothing about ancestor-
descendent relationships

! In the first step, we deduce that parents and 
children form ancestor-descendent relationships

! In each subsequent steps, we use the facts deduced 
in previous steps to get more ancestor-descendent 
relationships

! We stop when no new facts can be proven

9

Linear recursion

! With linear recursion, a recursive definition can 
make only one reference to itself

! Non-linear:
WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

! Linear:
WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(

)



4

10

Linear vs. non-linear recursion

! Linear recursion is easier to implement
" For linear recursion, just keep joining newly generated 
Ancestor rows with Parent

" For non-linear recursion, need to join newly generated 
Ancestor rows with all existing Ancestor rows

! Non-linear recursion may take fewer steps to 
converge
" Example: a→ b→ c→ d→ e

" Linear recursion takes 4 steps

" Non-linear recursion takes 3 steps

11

Mutual recursion example

! Table Natural (n) contains 1, 2, �, 100
! Which numbers are even/odd?

" An odd number plus 1 is an even number
" An even number plus 1 is an odd number
" 1 is an odd number
WITH Even(n) AS

(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),

Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

12

Operational semantics of WITH
! WITH R1 AS Q1, �,

Rn AS Qn
Q;
" Q1, �, Qn may refer to R1, �, Rn

! Operational semantics
1. R1 ← ∅, �, Rn← ∅
2. Evaluate Q1, �, Qn using the current contents of R1, �, Rn:
R1

new ← Q1, �, Rnnew ← Qn
3. If Rinew ≠ Ri for any i

3.1. R1 ← R1
new, �, Rn← Rnnew

3.2. Go to 2.
4. Compute Q using the current contents of R1, �, Rn and output 

the result



5

13

Computing mutual recursion
WITH Even(n) AS

(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),

Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

! Even = ∅, Odd = ∅

! �

14

Fixed points are not unique
WITH Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Parent (parent, child)

! There may be many other fixed points

! But if q is monotone, then all these fixed 
points must contain the fixed point we 
computed from fixed-point iteration 
starting with ∅
" Thus the unique minimal fixed point is the 

�natural� answer to the query

anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer
Ape Bart
Ape Lisa
bogus bogus

15

Mixing negation with recursion

! If q is non-monotone
" The fixed-point iteration may flip-flop and never converge

" There could be multiple minimal fixed points�so which one is the 
right answer?

! Example: reward students with GPA higher than 3.9
" Those no on the Dean�s List should get a scholarship

" Those without scholarships should be on the Dean�s List

" WITH Scholarship(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),

DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))



6

16

Fixed-point iteration does not converge
WITH Scholarship(SID) AS

(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),

DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

SID name age GPA
857 Lisa 8 4.3
999 Jessica 10 4.2

Student

SID

Scholarship DeansList
SID

17

Multiple minimal fixed points
WITH Scholarship(SID) AS

(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),

DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

SID name age GPA
857 Lisa 8 4.3
999 Jessica 10 4.2

Student

SID
999

SID
857

Scholarship DeansList

18

Legal mix of negation and recursion

! Construct a dependency graph
" One node for each table defined in WITH
" A directed edge R→ S if R is defined in terms of S

" Label the directed edge ��� if the query defining R is not 
monotone with respect to S

! Legal SQL3 recursion: no cycle containing a ��� edge
" Called stratified negation

! Bad mix: a cycle with at least one edge labeled ���

Ancestor

Legal!

Scholarship DeansList



7

19

Stratified negation example
! Find pairs of persons with common ancestors

WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)),

Person(person) AS
((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person
FROM Person p1, Person p2
WHERE p1.person <> p2.person)

EXCEPT
(SELECT a1.desc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;

Ancestor

Person

NoCommonAnc

20

Evaluating stratified negation

! The stratum of a node R is the maximum number of ��� 
edges on any path from R in the dependency graph
" Ancestor: stratum 0

" Person: stratum 0

" NoCommonAnc: stratum

! Evaluation strategy
" Compute tables lowest-stratum first

" For each stratum, use fixed-point iteration on all nodes in that 
stratum

� Stratum 0: Ancestor and Person
� Stratum 1: NoCommonAnc

#Intuitively, there is no negation within each stratum

Ancestor

Person

NoCommonAnc

21

Summary

! SQL3 WITH recursive queries

! Solution to a recursive query (with no negation): 
unique minimal fixed point

! Computing unique minimal fixed point: fixed-point 
iteration starting from ∅

! Mixing negation and recursion is tricky
" Illegal mix: fixed-point iteration may not converge; there 

may be multiple minimal fixed points

" Legal mix: stratified negation (compute by fixed-point 
iteration stratum by stratum)


