
1

Physical Data Organization

CPS 196.3

Introduction to Database Systems

2

Outline

! It�s all about disks!
" That�s why we always draw databases as

" And why the single most important metric in database
processing is the number of disk I/O�s performed

! Record layout

! Block layout

3

Storage hierarchy

Registers

Cache

Memory

Disk

Tapes

2

4

How far away is data?

Location Cycles

Registers 1

On-chip cache 2

On-board cache 10

Memory 100

Disk 106

Tape 109

Location Time

1 min.

2 min.

10 min.

1.5 hr.

2 yr.

2000 yr.
(Source: AlphaSort paper, 1995)

I/O dominates�design your algorithms to reduce I/O!

5

A typical disk

Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

�Moving parts� are slow

6

Top view

Track

Track
Track

Sectors

Higher-density sectors on inner tracks
and/or more sectors
on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors

3

7

Disk access time

Sum of:

! Seek time: time for disk heads to move to the
correct cylinder

! Rotational delay: time for the desired block to rotate
under the disk head

! Transfer time: time to read/write data in the block
(= time for disk to rotate over the block)

8

Random disk access

Seek time + rotational delay + transfer time

! Average seek time
" Time to skip one half of the cylinders?

" Not quite; should be time to skip a third of them (why?)

" �Typical� value: 5 ms

! Average rotational delay
" Time for a half rotation (a function of RPM)

" �Typical� value: 4.2 ms (7200 RPM)

9

Sequential disk access

Seek time + rotational delay + transfer time

! Seek time
" 0 (assuming data is on the same track)

! Rotational delay
" 0 (assuming data is in the next block on the track)

! Easily an order of magnitude faster than random
disk access!

4

10

Data layout strategy

Keep related things close together!

! Same sector/block

! Same track

! Same cylinder

! Adjacent cylinder

11

More performance tricks

! Disk scheduling algorithm
" Example: �elevator� algorithm

! Track buffer
" Read/write one entire track at a time

! Double buffering
" While processing the current block in memory, prefetch

the next block from disk

! Parallel I/O
" More disk heads working at the same time

12

Record layout

Record = row in a table

! Variable-format records
" Rare in DBMS�table schema dictates the format

" Relevant for semi-structured data such as XML

! Focus on fixed-format records
" With fixed-length fields only, or

" With possible variable-length fields

5

13

Fixed-length fields

! All field lengths and offsets are constant
" Computed from schema, stored in the system catalog

! Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT);

142
0 4

Bart (padded with �\0�)

24

10 2.3
28 36

! Watch out for alignment
" May need to pad; reorder columns if that helps

! What about NULL?
" Add a bitmap at the beginning of the record

14

Variable-length records

! Example: CREATE TABLE Student
(SID INT, name VARCHAR(20), age INT, GPA FLOAT,
comment VARCHAR(100));

! Approach 1: use field delimiters

! Approach 2: use an offset array

! Put all variable-length fields at the end (why?)

! Update is messy if it changes the length of a field

142
0 4

Bart\010 2.3
8 16

Weird kid!\0

142
0 4

Bart10 2.3
8 16

Weird kid!

18 22 32

22 32

15

LOB fields

! Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));

6

16

Block layout

How do you organize records in a block?

! NSM (N-ary Storage Model)
" Most commercial DBMS

! PAX (Partition Attributes Across)
" Recent work (Ailamaki et al., VLDB 2001)

17

NSM

! Store records from the beginning of each block

! Use a directory at the end of each block
" To locate records and manage free space

" Necessary for variable-length records

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3

857 Lisa 8 4.3

Why store data and directory
at two different ends?

18

Options

! Reorganize after every update/delete to avoid
fragmentation (gaps between records)
" Need to rewrite half of the block on average

! What if records are fixed-length?
" Reorganize after delete

� Only need to move one record

� Need a pointer to the beginning of free space

" Do not reorganize after update
� Need a bitmap indicating which slots are in use

7

19

Cache behavior of NSM

! Query: SELECT SID FROM Student WHERE GPA > 2.0;

! Assumption: cache block size < record size

! Lots of cache misses
" ID and GPA are not close enough by memory standards

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3

857 Lisa 8 4.3
142 Bart 10

2.3 123 Milhouse

10 3.1 857 Lisa

8 4.3

456 Ralph 8

Cache

2.3

20

PAX

! Most queries only access a few columns

! Cluster values of the same columns in each block
" When a particular column of a row is brought into the cache, the

same column of the next row is brought in together

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)

21

Summary
! Storage hierarchy

" Why I/O�s dominate the cost of database operations

! Disk
" Steps in completing a disk access
" Sequential versus random accesses

! Record layout
" Handling variable-length fields
" Handling NULL
" Handling modifications

! Block layout
" NSM: the traditional layout
" PAX: a layout that tries to improve cache performance

