CPS260/BGT204.1 Algorithms in Computational Biology September 9, 2008

Lecture 5: Greedy Algorithms, Dynamic Programming

Lecturer: Pankaj K. Agarwal Scribe: David Vaughn

5.1 Optimization Problems

These are problems with many possible solutions, and the goal is to find the besiptiraa) solution.
Examples of optimization problems include:

Shortest Path: find the shortest path in a graph
Sequence Alignment:find the best possible alignment between two DNA sequences

Matrix Multiplication: find the best order in which to multiply matrices

Two algorithmic models for solving optimization problems greedy algorithma&nddymanic programming
Often, both techniques can be used on the same problem, but there are some major differences in the results:

Greedy algorithms are generally faster, but do not always yield the optimal solution.

Dynamic programming is slower, but finds the optimum solution.

5.2 Greedy Algorithms

Basics. It is hard to formally define what is meant by a Greedy Algorithm, but one generally has these
important features:

e it builds up a solution in small steps,

e at each step, it makes whegemdo be the best choice based on local, readily available information.

As stated above, greedy algorithms do not generally find the optimum solution (i.e. change with minimum #
of coins — see lecture 4), but for some problems it can be proven that they do, for example:

Minimum Spanning Tree: Given a connected (i.e. there is a path between every pair of nodes), undirected
graphG = (V, E), and an associated weightfor each every edge ift, find a subsef’ C E such
thatG’ = (V,T) is connected and the sum of all the edge weights T" is minimized.

5-1

Lecture 5: September 9, 2003 5-2

Single Linkage Clustering: Given two clusters of points, find the distance between the closest pair of points,
such that the two points are not in the same cluster.

Interval Packing: Given a set of overlapping intervals, find a largest subset of pairwise-disjoint intervals.

Example: Interval Packing Sometimes also callddterval schedulingit can be states as followsiiven
a set of n intervals I = {iy, 2, ..., i, }, where the kth interval starts at time s;, and finishes at time f},, find a
largest subset of intervals that do not overlap.

The basic idea in a greedy algorithm for this problem is to use a simple rule, based on local information,
to choose the first intervalto be in the solution. Then we rule out all intervals overlapping wjtand
then make the next choice from the remaining intervals based on the same rule, and so on, until there are no
intervals left. The only problem is, what rule should we choose. There are several options:

e always choose the interval that starts first (min

e always choose the interval that is the shortest (fnin s)

e always choose the interval that finishes first (nfijn

It turns out that it is easy to find counterexamples showing that the first two rules don’t always work, but the
third rule works, leading to the algorithm described in Figbie

S=0
while T #0
remove from I the intervali with the smallesyf
insert iinto.S
remove from I all intervals that overlap witt
return S

Figure 5.1: A greedy algorithm for interval packing.

4 7
] 5 3 g 10

P

Figure 5.2: Interval packing example.

Let’s trace through the algorithm on the above example:

1. Interval 1 finishes first, so it is put ifi, and 1,2,4 are removed from

2. Of the remaining, 3 finishes first, so it goes$pand 3 and 5 are removed frofm

Lecture 5: September 9, 2003 5-3

3. 6 finishes next, so it goes i, and 6,7,8 are removed from
4. 9 goes taS, and removed frond.

5. 10 goes taS, 10 and 11 are removed frof and we are done.

Although this is a simple algorithm, it is not obvious that it will always work, so here is a brief proof:

Sketch of Proof The idea is to assume there is an optimal solufiprmnd then show thdsS| = |T|. Let
i1...ix be the intervals irt in the order they were added £ So|S| = k. Let j;...j,, be the the intervals in
T. We must prove that = m.

Lemma 1 For every pair of intervals,, andj,, ¢ does not finish aftey (i.e. f;, < f;.).

This is easy to prove by induction. Far= 1, this is true, since the algorithm chooses the earliest finishing
interval to put in S first. Now assume that for— 1 this is true. We also know that intervg| ; finishes
before intervalj, starts (f;, , < s;,). This means that, is one of the options when our greedy algorithm
chooses its:" interval, and since the algorithm always chooses the interval with the smalleshust be
true thatf;, < f;,

Now we can prove by contradiction that S is optimal Sifs not optimal, thedT'| > |S|, orm > k. From

the lemma we know thaf;, < f;,. But sincem > k, there must be an interval.; in 7. This interval
starts afterj, ends, and therefore aftéf ends. This means that after the greedy algorithm cligsthere
was still a non-overlapping interval left ih a contradiction to the stopping condition of the algorithm. Thus
S'is optimal.H

5.3 Dynamic Programming

Basics. As stated before, there are problems where there is no simple, greedy solution. In these cases, a
more systematic approach, dynamic programming, is called for. The basic idea of dynamic programming is
to show how to construct an optimum solution to a problem from optimum solutions to smaller subproblems.

e This is usually accompanied byracurrence equatigrexpressing theostor valueof the solution as
the total cost of the subsolutions, plus the cost of the final step of constructing the solution from these
subsolutions.

e Then we have a blueprint showing how to build an optimal solution from the bottom up, and an equation
that gives the associated value of this solution

Therefore, for a problem to be amenable to dynamic programming, it musédmmposablénto smaller
subproblems. For example: Consider the problem of finding the shortest path between Durham and Wash-
ington, D.C. If we know that the path must go through South Hill, then we can express the problem in terms
of 2 problems, namely, finding the shortest path from Durham to South Hill, and then from South Hill to
Washington, D.C.

You might notice that this idea bears a striking resemblence to thdinttie-and-conquetechnique, such as
is employed in thenerge-sorialgorithm. There are two important differences, however:

Lecture 5: September 9, 2003 5-4

e The divide-and-conquer technique is usually applied to a problem with a unique solution, so the under-
lying problem is typically not an optimization problem.

e A divide-and-conquer algorithm considers each subproblem only once, whereas a dynamic-
programming based algorithm may consider the same subproblem several times — thus the importance
of keeping track of the solution to each subproblem the first time it is solved SO as to avoid re-solving
the same problem several times (which could lead to combinatorial explosion!)

Example: Matrix-chain multiplication. An m x n matrix A hasm rows andn columns, and the element
in thei*" row and thej*" column is denoted as;.

amn

Given an? x m matrix A and anm x n matrix B, the product ofd and B is an¢ x n matrix C wherec;; is
theinner productof the i*" row of A and thej*" column of B. That is,

m m

g a1k - bgr - g a1k - brn
ai; a2 ... b1 bi2 k=1 k=1
ag1 Q22 N X b21 b22 e — . . .

Qi . : bmn = -
E Qg b1 - E gy - bre
k=1 k=1

It should be clear that the number of columnsdmmust be equal to the number of rows i) otherwise
A x B is undefined. As you can see, the number of entri€s is/ - n, and the number of terms summed to
calculate each entry i®, so we say that matrix multiplication is takésn multiplications, or isO(¢mn).

Now consider the problem of multiplying k matrices:

Matrix-Chain Multiplication Problem: Given an ordered list of matricesi My Ms... My, where matrix
M; has dimensiop;_ x p;, parenthesize the list to indicate the order in which to multiply the matrices
so that the total number of multiplications is minimized.

For example, consider the chal; Ms M3 M, where the matrices are of dimensidng 10, 10 x 1, 1 x 10,
and10 x 1 respectively. There are several orders in which they can be multiplied:

e If they are multiplied in the ordefM; (M2 M3)) My, then the total # of operations is

1100 + 100 +10 = 210

e On the other hand, if they are multiplied in the ordé{, M>)(M5M,), then the total # of operations
is

10+ 10 + 1= 21|

Lecture 5: September 9, 2003 5-5

Clearly, order matters!

One first impulse (it would be wrong) would be to just consider every possible parenthesization of the chain.
Let’s see how many such choices are. If one has a chaimdtrices, it can be split into two chaifg, ... My,
and My4....M,, for any valuek betweenl andn, and the two chains can be paranthesized independently
(My...My)(Mgy1...M,). For this value of, the total # of possible parenthesizations is the product of the
total # from each of the two subchains. Summing ovekalle obtain a recurrence equation expressing the
total # of orderings:

1 ifn=1,

Pln) = Zn:P(k)P(n k) ifn>2
k=1

It turns out thatP(n) increases very rapidly with. More specifically,P(n) = C(n — 1), whereC(n) are

the Catalan Numbers
1 2n
— ~ 4"
C(n) i (")

Obviously, it is unrealistic to search the whole space of possible parenthesizations. However the problem is
decomposable

e Remember how the recurrence equation above was formulated. It turns out that the same idea can help
formulate a faster solution.

e Given a chain ofn matrices,M;...Mj, we know the optimal solution will perform some multipli-
cation My Mjy41.., last (here,M;_; is just shorthand for the matrix that results from the product
M;M;,y...M;).

e Therefore, we know that the cost of the optimal solution is just the cost of the optimal solufién o
plus the cost of the optimal solution fd}. .. ,, plus the cost of multiplying the two together.

Using this idea, we can write a recurrence equation¥¢¥, j), the cost (i.e. number of multiplications) in
the optimal solution to the problem of calculating;_;

min (C(i,1) + C(I,7) + pi— D oifd < g,
C(i,j)):{ i (C(0,0) + C(L5) + picapipy) J

0 ifi=j.
Thus, the goal is to find'(1,n).

A recursive algorithm. This recurrence equation might lead one to write a simple recursive program to solve
this problem, as shown in Figuke3

The problem with this algorithm is that it revisits the same subproblems many times, and each time it does
not remember what it did before, so it solves them again. This is obviously very inefficient.

The running time of this algorithm is given by the following recurrence equation, whgig¢ denotes the

Lecture 5: September 9, 2003 5-6

MULTORDER(3, j)

if i=jthen
return O

C(i,j) =00

for [=ito j—1do
g = MULTORDER(4, [) + MULTORDER(+ 1, j) + pi—1pip;
¢ = min(q, ¢)

return (c)

Figure 5.3: A recursive algorithm for matrix chain multiplication.

I=1 C{ 1 ,4:1 1=1

ay e

C12.2) C(3,4) C2.3) Ci44) C(1,1) Ct2,3)

pos Ci1,1) C{2,2) C3.3) CiAA4) Y
3)

C(3,3) Ci4,4) C(2,2) C(3, C2,2) C(3,3) C(1,1)CZ:2)

Figure 5.4: Recursion tree for multiplying 4 matrices.

running time of MULTORDER(1, n) (more generally, for MLTORDER(%, ¢ + n — 1)):
n—1
S TW+T(n—1)+1) ifn>1,

=1
1 if n=1.

T(n) =

It can be shown thdf'(n) > 27, so clearly this inefficiency leads to a very slow algorithm.

In general, there are 2 pitfalls to recursive algorithms;

1. Re-solving the same problem many times (see figure 5.2).

2. Overhead of recursive calls: each time a function is called, the computer has to do a lot of shuffling
around of variables, scopes, etc.

Modified recursive solution: Memoizing. If we modify the recursive solution to remember the solutions
that have been computed already, we can speed up the running time immensely:

This technique of using a recursive algorithm together with a table to record values is sometimes called
Memoizing In this case, with three nested for-loops, it is easy to see the runningitimec O(n?) This
solution solves pitfall # 1 from above, but not # 2. An iteritive solution would be even faster.

A dynamic-programming based algorithm. The iterative solution described in Figuses is similar to the
memoized solution, except the table of values is explicitly filled in from the bottom up.

Lecture 5: September 9, 2003

MULTORDER(I, j)
if ¢=jthen
return O
C(i,j) = o0
for [=ito j—1do
if C(i,1)="
MULTORDER(i, [)
if C(l+1,5)="
MULTORDER(+ 1, j)
q=C(i,1) + C(l+1,j) + pi—1pip;
¢ = min(q, ¢)
return (c)

*note: T means undefined, or not yet calculated

Figure 5.5: An efficient recursive algorithm for matrix chain multiplication.

MULTORDER(1, k)
for i1 =1to kdo
C(i,i)=0
for [=1t0 k—1do
for i=1to k—1do
j=i+1
C(i,j) =0
for u=1ito j—1do
q= C(Z,U) + C(’LL + 17]) +pi71pupj

it q< C(i,)
C(Zvj) =q
S(Z’j) =u

return (C(1,k))

Figure 5.6: A dynamic-programming based algorithm for matrix chain multiplication.

Lecture 5: September 9, 2003 5-8

Here, we have added an additional tablg, j) that allows us to retrieve the actual solution, in addition to
the table that allows us to calculate its cost.

Now we will trace the solution of the original example, the chadnM, M3 M, where the matrices are of
dimensionsl x 10, 10 x 1, 1 x 10, and10 x 1 respectively. It will be helpful to remember that:
e C(i,j) in the table denotes the minimum cost for computing the chain;
e Matrix M; has dimensiong;_; x p; in this case, that means
po=1,p1 =10,p2 =1,p3 =10,ps =1
Step-by-step through the algorithm.

1. First, allC(4,4) are initialized to O (Figuré.7).

2. Next, the optimum solutions for all subchains of length 2 are calculated (Fig8re
3. Then, subchains of length(Figure5.9).

4. Finally, the optimum solution is found (Figukel10).

=12 3 4 1 2 3 4
0

0

0

£ L2 B —

C(i,]) S5,)

Figure 5.7: Table€” andS afterC(i,) are initialized.

=1234 1234

1foTio 1
2 |o]d 2
=i 0o 3
4 0
Ci) S

Figure 5.8: After thé = 1 iteration of the outeifor loop.

Thus we have found the minimum cost. Again, since there are three nested for loops, this algaithr) is

One may be wondering how to actually obtain the correct ordering from the S table. Basically, one keeps
dividing the chain into two. Start witl$ (1, k): this valuei means the optimal solution was obtained by

performing the multiplicatior\/; ; M, _; last. Then look ug(1,4) andS(i + 1, j) to find where to divide
these two chains, and so on.

Lecture 5: September 9, 2003 5-9

=1234 1234
1[o Jio]2d 1]2
._2[[0 lod20 2 |2
3 0 |10 3

4 0
Ctij) Si,)

Figure 5.9: After thd = 2 iteration of the outelfor loop.

=1234 1234
1o fio]2d21 1.2 2
._2[[0og20 AR
3 0 [10 3
4 0
Ctij) Si,5)

Figure 5.10: After thé = 3 iteration of the outeffor loop.

5.4 Bibliographic notes
Most of the material covered in this lecture can be found in

e Cormen, T., Leiserson, C. and Stein, Btroduction to AlgorithmsMIT Press.

¢ Kleinberg, J. and Tardos, Hntroduction to Algorithmsunpublished manuscript.

	Optimization Problems
	Greedy Algorithms
	Dynamic Programming
	Bibliographic notes

