
CPS260/BGT204.1 Algorithms in Computational Biology September 9, 2003

Lecture 5: Greedy Algorithms, Dynamic Programming

Lecturer: Pankaj K. Agarwal Scribe: David Vaughn

5.1 Optimization Problems

These are problems with many possible solutions, and the goal is to find the best (i.e.optimal) solution.
Examples of optimization problems include:

Shortest Path: find the shortest path in a graph

Sequence Alignment:find the best possible alignment between two DNA sequences

Matrix Multiplication: find the best order in which to multiplyn matrices

Two algorithmic models for solving optimization problems aregreedy algorithmsanddymanic programming.
Often, both techniques can be used on the same problem, but there are some major differences in the results:

Greedy algorithms are generally faster, but do not always yield the optimal solution.

Dynamic programming is slower, but finds the optimum solution.

5.2 Greedy Algorithms

Basics. It is hard to formally define what is meant by a Greedy Algorithm, but one generally has these
important features:

• it builds up a solution in small steps,

• at each step, it makes whatseemsto be the best choice based on local, readily available information.

As stated above, greedy algorithms do not generally find the optimum solution (i.e. change with minimum #
of coins – see lecture 4), but for some problems it can be proven that they do, for example:

Minimum Spanning Tree: Given a connected (i.e. there is a path between every pair of nodes), undirected
graphG = (V,E), and an associated weightw for each every edge inE, find a subsetT ⊆ E such
thatG′ = (V, T) is connected and the sum of all the edge weightsw ∈ T is minimized.

5-1

Lecture 5: September 9, 2003 5-2

Single Linkage Clustering: Given two clusters of points, find the distance between the closest pair of points,
such that the two points are not in the same cluster.

Interval Packing: Given a set of overlapping intervals, find a largest subset of pairwise-disjoint intervals.

Example: Interval Packing Sometimes also calledinterval scheduling, it can be states as follows:Given
a set of n intervals I = {i1, i2, ..., in}, where the kth interval starts at time sk and finishes at time fk, find a
largest subset of intervals that do not overlap.

The basic idea in a greedy algorithm for this problem is to use a simple rule, based on local information,
to choose the first intervali to be in the solution. Then we rule out all intervals overlapping withi, and
then make the next choice from the remaining intervals based on the same rule, and so on, until there are no
intervals left. The only problem is, what rule should we choose. There are several options:

• always choose the interval that starts first (mins)

• always choose the interval that is the shortest (minf − s)

• always choose the interval that finishes first (minf)

It turns out that it is easy to find counterexamples showing that the first two rules don’t always work, but the
third rule works, leading to the algorithm described in Figure5.1:

S = ∅
while I 6= ∅

remove from I the intervali with the smallestf
insert i into S
remove from I all intervals that overlap withi

return S

Figure 5.1: A greedy algorithm for interval packing.

Figure 5.2: Interval packing example.

Let’s trace through the algorithm on the above example:

1. Interval 1 finishes first, so it is put inS, and 1,2,4 are removed fromI.

2. Of the remaining, 3 finishes first, so it goes toS, and 3 and 5 are removed fromI.

Lecture 5: September 9, 2003 5-3

3. 6 finishes next, so it goes inS, and 6,7,8 are removed fromI.

4. 9 goes toS, and removed fromI.

5. 10 goes toS, 10 and 11 are removed fromI, and we are done.

Although this is a simple algorithm, it is not obvious that it will always work, so here is a brief proof:

Sketch of Proof The idea is to assume there is an optimal solutionT , and then show that|S| = |T |. Let
i1...ik be the intervals inS in the order they were added toS. So|S| = k. Let j1...jm be the the intervals in
T . We must prove thatk = m.

Lemma 1 For every pair of intervalsin andjn, i does not finish afterj (i.e. fin ≤ fjn).

This is easy to prove by induction. Forn = 1, this is true, since the algorithm chooses the earliest finishing
interval to put in S first. Now assume that forn − 1 this is true. We also know that intervaljn−1 finishes
before intervaljn starts (fjn−1 ≤ sjn). This means thatjn is one of the options when our greedy algorithm
chooses itsnth interval, and since the algorithm always chooses the interval with the smallestf , it must be
true thatfin ≤ fjn

Now we can prove by contradiction that S is optimal. IfS is not optimal, then|T | > |S|, orm > k. From
the lemma we know thatfik ≤ fjk . But sincem > k, there must be an intervaljk+1 in T . This interval
starts afterjk ends, and therefore afterik ends. This means that after the greedy algorithm choseik, there
was still a non-overlapping interval left inI, a contradiction to the stopping condition of the algorithm. Thus
S is optimal.

5.3 Dynamic Programming

Basics. As stated before, there are problems where there is no simple, greedy solution. In these cases, a
more systematic approach, dynamic programming, is called for. The basic idea of dynamic programming is
to show how to construct an optimum solution to a problem from optimum solutions to smaller subproblems.

• This is usually accompanied by arecurrence equation, expressing thecostor valueof the solution as
the total cost of the subsolutions, plus the cost of the final step of constructing the solution from these
subsolutions.

• Then we have a blueprint showing how to build an optimal solution from the bottom up, and an equation
that gives the associated value of this solution

Therefore, for a problem to be amenable to dynamic programming, it must bedecomposableinto smaller
subproblems. For example: Consider the problem of finding the shortest path between Durham and Wash-
ington, D.C. If we know that the path must go through South Hill, then we can express the problem in terms
of 2 problems, namely, finding the shortest path from Durham to South Hill, and then from South Hill to
Washington, D.C.

You might notice that this idea bears a striking resemblence to the thedivide-and-conquertechnique, such as
is employed in themerge-sortalgorithm. There are two important differences, however:

Lecture 5: September 9, 2003 5-4

• The divide-and-conquer technique is usually applied to a problem with a unique solution, so the under-
lying problem is typically not an optimization problem.

• A divide-and-conquer algorithm considers each subproblem only once, whereas a dynamic-
programming based algorithm may consider the same subproblem several times — thus the importance
of keeping track of the solution to each subproblem the first time it is solved so as to avoid re-solving
the same problem several times (which could lead to combinatorial explosion!)

Example: Matrix-chain multiplication. An m× n matrixA hasm rows andn columns, and the element
in theith row and thejth column is denoted asaij .

A =

 a11 a12 . . .
a21 a22 . . .

...
... amn


Given aǹ ×m matrixA and anm× n matrixB, the product ofA andB is an`× n matrixC wherecij is
the inner productof theith row ofA and thejth column ofB. That is,

 a11 a12 . . .
a21 a22 . . .

...
... alm

×
 b11 b12 . . .

b21 b22 . . .
...

... bmn

 =



m∑
k=1

a1k · bk1 · · ·
m∑
k=1

a1k · bkn

...
...

...
m∑
k=1

a`k · bk1 · · ·
m∑
k=1

a`k · bk`


.

It should be clear that the number of columns inA must be equal to the number of rows inB, otherwise
A×B is undefined. As you can see, the number of entries inC is ` · n, and the number of terms summed to
calculate each entry ism, so we say that matrix multiplication is takes`mn multiplications, or isO(`mn).

Now consider the problem of multiplying k matrices:

Matrix-Chain Multiplication Problem: Given an ordered list ofk matricesM1M2M3...Mk, where matrix
Mi has dimensionpi−1×pi, parenthesize the list to indicate the order in which to multiply the matrices
so that the total number of multiplications is minimized.

For example, consider the chainM1M2M3M4 where the matrices are of dimensions1× 10, 10× 1, 1× 10,
and10× 1 respectively. There are several orders in which they can be multiplied:

• If they are multiplied in the order(M1(M2M3))M4, then the total # of operations is

100 + 100 +10 = 210

• On the other hand, if they are multiplied in the order(M1M2)(M3M4), then the total # of operations
is

10 + 10 + 1 = 21!

Lecture 5: September 9, 2003 5-5

Clearly, order matters!

One first impulse (it would be wrong) would be to just consider every possible parenthesization of the chain.
Let’s see how many such choices are. If one has a chain ofnmatrices, it can be split into two chainsM1...Mk

andMk+1...Mn for any valuek between1 andn, and the two chains can be paranthesized independently
(M1...Mk)(Mk+1...Mn). For this value ofk, the total # of possible parenthesizations is the product of the
total # from each of the two subchains. Summing over allk we obtain a recurrence equation expressing the
total # of orderings:

P (n) =


1 if n = 1,
n∑
k=1

P (k)P (n− k) if n ≥ 2.

It turns out thatP (n) increases very rapidly withn. More specifically,P (n) = C(n − 1), whereC(n) are
theCatalan Numbers:

C(n) =
1

n+ 1

(
2n
n

)
≈ 4n.

Obviously, it is unrealistic to search the whole space of possible parenthesizations. However the problem is
decomposable:

• Remember how the recurrence equation above was formulated. It turns out that the same idea can help
formulate a faster solution.

• Given a chain ofn matrices,M1...Mk, we know the optimal solution will perform some multipli-
cationM1..kMk+1..n last (here,Mi..j is just shorthand for the matrix that results from the product
MiMi+1...Mj).

• Therefore, we know that the cost of the optimal solution is just the cost of the optimal solution toM1..k

plus the cost of the optimal solution toMk+1..n plus the cost of multiplying the two together.

Using this idea, we can write a recurrence equation forC(i, j), the cost (i.e. number of multiplications) in
the optimal solution to the problem of calculatingMi..j

C(i, j)) =

{
min
i≤l≤j

(C(i, l) + C(l, j) + pi−1plpj) if i < j,

0 if i = j.

Thus, the goal is to findC(1, n).

A recursive algorithm. This recurrence equation might lead one to write a simple recursive program to solve
this problem, as shown in Figure5.3:

The problem with this algorithm is that it revisits the same subproblems many times, and each time it does
not remember what it did before, so it solves them again. This is obviously very inefficient.

The running time of this algorithm is given by the following recurrence equation, whereT (n) denotes the

Lecture 5: September 9, 2003 5-6

MULTORDER(i, j)
if i = j then

return 0
C(i, j) =∞
for l = i to j − 1 do
q = MULTORDER(i, l) + MULTORDER(l + 1, j) + pi−1plpj
c = min(q, c)

return (c)

Figure 5.3: A recursive algorithm for matrix chain multiplication.

Figure 5.4: Recursion tree for multiplying 4 matrices.

running time of MULTORDER(1, n) (more generally, for MULTORDER(i, i+ n− 1)):

T (n) =


n−1∑
l=1

(T (l) + T (n− l) + 1) if n > 1,

1 if n = 1.

It can be shown thatT (n) > 2n, so clearly this inefficiency leads to a very slow algorithm.

In general, there are 2 pitfalls to recursive algorithms;

1. Re-solving the same problem many times (see figure 5.2).

2. Overhead of recursive calls: each time a function is called, the computer has to do a lot of shuffling
around of variables, scopes, etc.

Modified recursive solution: Memoizing. If we modify the recursive solution to remember the solutions
that have been computed already, we can speed up the running time immensely:

This technique of using a recursive algorithm together with a table to record values is sometimes called
Memoizing. In this case, with three nested for-loops, it is easy to see the running timeT (n) ∈ O(n3) This
solution solves pitfall # 1 from above, but not # 2. An iteritive solution would be even faster.

A dynamic-programming based algorithm. The iterative solution described in Figure5.6 is similar to the
memoized solution, except the table of values is explicitly filled in from the bottom up.

Lecture 5: September 9, 2003 5-7

MULTORDER(i, j)
if i = j then

return 0
C(i, j) =∞
for l = i to j − 1 do

if C(i, l) =↑
MULTORDER(i, l)

if C(l + 1, j) =↑
MULTORDER(l + 1, j)

q = C(i, l) + C(l + 1, j) + pi−1plpj
c = min(q, c)

return (c)

*note: ↑ means undefined, or not yet calculated

Figure 5.5: An efficient recursive algorithm for matrix chain multiplication.

MULTORDER (1, k)
for i = 1 to k do
C(i, i) = 0

for l = 1 to k − 1 do
for i = 1 to k − l do
j = i+ l
C(i, j) =∞
for u = i to j − 1 do
q = C(i, u) + C(u+ 1, j) + pi−1pupj
if q < C(i, j)
C(i, j) = q
S(i, j) = u

return (C(1, k))

Figure 5.6: A dynamic-programming based algorithm for matrix chain multiplication.

Lecture 5: September 9, 2003 5-8

Here, we have added an additional tableS(i, j) that allows us to retrieve the actual solution, in addition to
the table that allows us to calculate its cost.

Now we will trace the solution of the original example, the chainM1M2M3M4 where the matrices are of
dimensions1× 10, 10× 1, 1× 10, and10× 1 respectively. It will be helpful to remember that:

• C(i, j) in the table denotes the minimum cost for computing the chainMi..j

• Matrix Mi has dimensionspi−1 × pi in this case, that means

p0 = 1, p1 = 10, p2 = 1, p3 = 10, p4 = 1

Step-by-step through the algorithm.

1. First, allC(i, i) are initialized to 0 (Figure5.7).

2. Next, the optimum solutions for all subchains of length 2 are calculated (Figure5.8).

3. Then, subchains of length3 (Figure5.9).

4. Finally, the optimum solution is found (Figure5.10).

Figure 5.7: TablesC andS afterC(i, i) are initialized.

Figure 5.8: After thel = 1 iteration of the outerfor loop.

Thus we have found the minimum cost. Again, since there are three nested for loops, this algorithm isO(n3).

One may be wondering how to actually obtain the correct ordering from the S table. Basically, one keeps
dividing the chain into two. Start withS(1, k): this valuei means the optimal solution was obtained by
performing the multiplicationM1..iMi+1..j last. Then look upS(1, i) andS(i+ 1, j) to find where to divide
these two chains, and so on.

Lecture 5: September 9, 2003 5-9

Figure 5.9: After thel = 2 iteration of the outerfor loop.

Figure 5.10: After thel = 3 iteration of the outerfor loop.

5.4 Bibliographic notes

Most of the material covered in this lecture can be found in

• Cormen, T., Leiserson, C. and Stein, C.,Introduction to Algorithms, MIT Press.

• Kleinberg, J. and Tardos, E.,Introduction to Algorithms, unpublished manuscript.

	Optimization Problems
	Greedy Algorithms
	Dynamic Programming
	Bibliographic notes

