
COMPSCI 108 Duke University Adam Durity

VOOGA
Xml Specification

Adam Durity

Department of Computer Science
Duke University

Table of Contents

1 General Notes .. 2
1.1 Introduction... 2
1.2 Xml Editor ... 2
1.3 Web Resources .. 2
1.4 General Types .. 2

2 Controller Element.. 3
2.1 Controller .. 3
2.2 Players.. 3

3 Timeline Element.. 4
3.1 Levels ... 4
3.2 Conditionals .. 4

4 Level Element... 4
4.1 Field .. 4
4.2 Frame ... 5
4.3 Layout ... 5

5 Objects Element ... 5
6 Conclusion.. 5

 1

COMPSCI 108 Duke University Adam Durity

1 General Notes
1.1 Introduction
The Xml documents and schema provided are for your use as a starting point. They are meant to
be extended upon as need be. Try to stick to using the schema as a layout, but if an element
needs to be added to the schema, add it, but be prudent. Only add something if it’s really
needed.

1.2 Xml Editor
When working with Xml, you’re probably going to want a software tool to design it with. You can
use just a plain text editor, but you’ll find yourself getting lost in the syntax of namespaces and the
like that you’ll miss the overall structural picture. An editor with a graphical view will give you a
top down look on the Xml you will be editing and writing, allowing you to design better Xml.

As a suggestion for an editor, I recommend the free edition of XmlSpy 2005 which can be found
here: http://www.altova.com/support_freexmlspyhome.asp. XmlSpy can be integrated into
Eclipse for ease of use.

1.3 Web Resources
I recommend you consider the following resources as needed while working with Xml.

• http://www.w3schools.com/schema/

• http://www.w3schools.com/xml/

• http://apps.gotdotnet.com/xmltools/xsdvalidator/ (for validating any changes you make)

• http://www.w3.org/XML/

• If you can’t find what you’re looking for on this list, search for it.

1.4 General Types
Several types are used throughout the schema, so these types have been placed at a global
scope within the file. The types are described below.

1.4.1 Variable
Many times throughout, you will see that certain elements can contain variable elements which
specify the initial values of named variables within the model. For example:

<controller ...>
...
<variable name=“num_players” value=“2” />
</controller>

The code above specifies the initial value that the number-of-players variable in the model should
have. It does not declare the variable in any way. The java code must already be set to handle
each specific variable that can be specified in this way. This is only meant to be a way to specify
initial values. Elements which have the capability to contain variables are specified throughout.

1.4.2 Conditional
conditional is the base type for the conditional statements that appear within the level
element, such as win, lose, and draw. This type simply defines an attribute class which is the
class in which the conditional function appears in order to evaluate a specific condition.

1.4.3 Position, Velocity, and Dimensions
Position, velocity, and dimensions can all be specified with these types as follows:

 2

http://www.altova.com/support_freexmlspyhome.asp
http://www.w3schools.com/schema/
http://www.w3schools.com/xml/
http://apps.gotdotnet.com/xmltools/xsdvalidator/
http://www.w3.org/XML/

COMPSCI 108 Duke University Adam Durity

<position x=“0” y=“0” />
<dimensions height=“100” width=“100” />
<velocity dx=“1” dy=“1” />

These types will be used throughout the schema to specify the properties of objects as they are
placed in the game world.

2 Controller Element
2.1 Controller
The controller takes one required attribute, the controller class. Thus a controller is defined as:

<controller class=“ControllerClass”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“file:controller.xsd”>
...
</controller>

The other attributes, xmlns:xsi and xsi:noNamespaceSchemaLocation, define that this xml
is to be parse with a schema and the location of that schema. The controller tag can contain
variable elements.

2.2 Players
Within the controller tag the players tag must appear and must contain at least one of two
elements: humanplayer and computerplayer.

2.2.1 Human Player
The humanplayer tag defines all of the information for the human player of the game. This
information includes the controls that a player uses to control the game and any variable
elements specific to the human player that may need to be set, for instance, health. Also, the
humanplayer tag has a class attribute that can optionally be defined to allow for a class
specific to the human player if need be.

<humanplayer class=“test”>
...
</humanplayer>

2.2.1.1 Controls
The controls set defines a set of control elements that can be used to store information
about the controls the user has and what events they correspond to, as follows:

<controls>
 <control key=“a” event=“attack” />
 ...
</controls>

2.2.2 Computer Player
The computerplayer tag defines information about the computer player, if there is one. This
element contains information about the AI and any variable elements that are relevant to the
computer player. Like humanplayer, computerplayer also has a class attribute that can be
defined if there is a relevant class to handle computer play specifics other than the AI.

 3

COMPSCI 108 Duke University Adam Durity

2.2.2.1 AI
The AI element defines the AI by providing a class in the class attribute that represents the
class that should handle all of the AI for the computer. Also, ai can contain variable elements
for specific AI attributes.

<ai class=“GameAIClass”>
 <variable name=“ai_var” value=“0” />
</ai>

3 Timeline Element
The purpose of the game timeline Xml file is to organize the structure of the game levels and how
they proceed from one to the next.

3.1 Levels
The game timeline contains information about all of the levels and the order in which they appear
as well as references to their particular Xml files. This is done through the levels and level
elements.

<levels num=“3”>
 <level name=“Level 1” file=“level1.xml” />
 <level name=“Level 2” file=“level2.xml” />
 <level name=“Level 3” file=“level3.xml” />
</levels>

3.2 Conditionals
The conditionals define the conditions under which the game is won, lost, or drawn. These
elements simply contain a reference to a class which contains all of the logic to determine
whether the condition has been met. The win and lose conditionals, as described in 1.4.2,
are required, but the draw conditional is optional. In addition, conditionals can contain
variable elements.

<conditionals>
 <win class=“GameWon”>
 <variable name=“num_success” value=“3” />
 </win>
 <lose class=“GameLoss” />
 <draw class=“GameDraw” />
</conditionals>

4 Level Element
4.1 Field
The field defines the entire playing field for the level. In Pac-man this is just what is on the
screen, but in a side-scroller, this is the entire level. The field element contains the dimensions
of the playing field as well as any variable that act on the playing field such as color, sounds, etc.

 4

COMPSCI 108 Duke University Adam Durity

<level name=“” id=“1”>
<field>
<dimensions height=“50” width=“50” />
<variable name=“background-color” value=“#000000” />
<variable name=“music” value=“sound.wav” />
</field>
...
</level>

4.2 Frame
The frame defines the visible element of the level. In essence, it is the view, what can be seen by
the player at any given time. In the example before, the frame for Pac-man is the whole level,
where as in the side-scroller, it is simply the section of the level that the player is currently on.
The frame element defines the initial position and dimensions of the frame at the start of the
level.

4.3 Layout
The layout element defines the starting positions and initial conditions for all objects within the
level. These objects are derived from the game objects Xml file. Various properties can be set
such as position, dimensions, velocity, and any model-defined variables.

<level name=“” id=“1”>
...
 <layout>
 <object name=“obj1” type=“Object”>
 <position x=“0” y=“0” />
 <velocity dx=“2” dy=“1” />
 </object>
 </layout>
</level>

5 Objects Element
The objects element defines all of the types of objects that can be present within a game. The
actual instances of these objects are defined and modified within the level element’s layout
element. Each object references a Java class which handles all of the properties, action, and
interactions with other objects for that object. The gui element defines GUI properties for this
object for the game to use to display the object. Variables can be defined within the object
element that acts on all objects within the game, perhaps setting a default for a variable that could
be overridden at the scope of the level.

<objects>
 <object type=“Object” class=“Object”>
 <dimensions width=“1” height=“1” />
 <gui img=“object.png” />
 <variable name=“parameter” value=“test” />
 </object>
 ...
</objects>

6 Conclusion
This is by no means an exhaustive implementation of the Xml game architecture. Rather this is
just supposed to give you a starting point from which to grow your own version of the OOGA Xml
Specification. When creating your own xml and schemas, keep in mind that xml is simply a way
of storing structured data and is not meant for logic of any kind. Good luck!

 5

	General Notes
	Introduction
	Xml Editor
	Web Resources
	General Types
	Variable
	Conditional
	Position, Velocity, and Dimensions

	Controller Element
	Controller
	Players
	Human Player
	Controls

	Computer Player
	AI

	Timeline Element
	Levels
	Conditionals

	Level Element
	Field
	Frame
	Layout

	Objects Element
	Conclusion

