Tapestry classes -> STL

® What's the difference between tvector and vector

» Safety and the kitchen sink
* What happens with t[21] on a 21-element vector?
* Part of STL means crufty code (whose viewpoint?)

> What about Java analog?
® Differences in wordlines.cpp and tapwordlines.cpp
> Map compared to tmap, what other kinds of maps?

> Sets and vectors, which is easier to use?

® Anything not clear in either program? Are these programs
object-oriented?

Software Design

1.1



Standard Libraries

® In C++ there is the Standard Library, formerly known as the
Standard Template Library or STL
> Emphasizes generic programming (using templates)
> Write a sorting routine, the implementation depends on
* Elements being comparable

* Elements being assignable

We should be able to write a routine not specific to int, string

or any other type, but to a generic type that supports being
comparable/assignable

® In C++ atemplated function/class is a code-factory, generates
code specific to a type at compile time

> Arguably hard to use and unsafe

Software Design 1.2



STL concepts

® Container: stores objects, supports iteration over the objects
» Containers may be accessible in different orders
» Containers may support adding/removing elements
> e.g., vector, map, set, deque, list, multiset, multimap

® Iterator: interface between container and algorithm
> Point to objects and move through a range of objects
> Many kinds: input, forward, random access, bidirectional
> Syntax is pointer like, analagous to (low-level) arrays

® Algorithms
> find, count, copy, sort, shuffle, reverse, ...

Software Design 1.3



Iterator specifics

® An iterator is dereferenceable, like a pointer
> *1tis the object an iterator points to

® An iterator accesses half-open ranges, [first..last), it can have a
value of last, but then not dereferenceable

> Analagous to built-in arrays as we’ll see, one past end is ok

® An iterator can be incremented to move through its range
> Past-the-end iterators not incrementable

vector<int> v; for(int k=0; k < 23; k++) v.push_back(k);

vector<int>::iterator 1t = v.begin(Q);
while (it = v.,end()) { cout << *v << endl; v++;}

Software Design 1.4



lterator as Pattern

® (GOF) Provides access to elements of aggregate object
sequentially without exposing aggregate’s representation

> Support multiple traversals

> Supply uniform interface for different aggregates: this is
polymorphic iteration (see C++ and Java)

® Solution: tightly coupled classes for storing and iterating
> Aggregate sometimes creates iterator (Factory pattern)
» Iterator knows about aggregate, maintains state

® Forces and consequences
> Who controls iteration (internal iterator, apply in MultiSet)?
> Who defines traversal method?
> Robust in face of insertions and deletions?

Software Design 1.5



STL overview

® STL implements generic programming in C++
» Container classes, e.g., vector, stack, deque, set, map
> Algorithms, e.g., search, sort, find, unique, match, ...
> Iterators: pointers to beginning and one past the end
> Function objects: less, greater, comparators

® Algorithms and containers decoupled, connected by iterators
> Why is decoupling good?

> Extensible: create new algorithms, new containers, new
iterators, etc.

> Syntax of iterators reflects array/pointer origins, an array
can be used as an iterator

Software Design 1.6



STL examples: wordlines.cpp

® How does an iterator work?
> Start at beginning, iterate until end: use [first..last) interval
> Pointer syntax to access element and make progress

vector<int> v; // push elements
vector<int>::iterator first = v.begin();
vector<int>::iterator last v.end();
while (first < last) {

cout << *first << endl;

++First;

}

> Will the while loop work with an array/pointer?

® In practice, iterators aren’t always explicitly defined, but
passed as arguments to other STL functions

Software Design 1.7



Review: what’s a map, STL/Tapestry

® Maps keys to values
> Insert key/value pair
> Extract value given a key

> STL uses red-black tree, Tapestry uses bst or hashtable
* STL unofficially has a hash_map, see SGI website

> Performance and other trade-offs?

® In Tapestry, there’s an inheritance hierarchy of tmap,
BSTMap, HMap

> The hash-table requires map of string->value

* Makes programming simpler, too restrictive in practice

> See tapwordlines.cpp

Software Design

1.8



