
Software Design 1.1

Tapestry classes -> STL

What’s the difference between tvector and vector

Safety and the kitchen sink

• What happens with t[21] on a 21-element vector?

• Part of STL means crufty code (whose viewpoint?)

What about Java analog?

Differences in  wordlines.cpp and tapwordlines.cpp

Map compared to tmap, what other kinds of maps?

Sets and vectors, which is easier to use?

Anything not clear in either program? Are these programs
object-oriented?



Software Design 1.2

Standard Libraries

In C++ there is the Standard Library, formerly known as the
Standard Template Library or STL

Emphasizes generic programming (using templates)

Write a sorting routine, the implementation depends on

• Elements being comparable

• Elements being assignable

     We should be able to write a routine not specific to int, string
or any other type, but to a generic type that supports being
comparable/assignable

In C++ a templated function/class is a code-factory, generates
code specific to a type at compile time

Arguably hard to use and unsafe



Software Design 1.3

STL concepts

Container: stores objects, supports iteration over the objects

Containers may be accessible in different orders

Containers may support adding/removing elements

e.g., vector, map, set, deque, list, multiset, multimap

Iterator: interface between container and algorithm

Point to objects and move through a range of objects

Many kinds: input, forward, random access, bidirectional

Syntax is pointer like, analagous to (low-level) arrays

Algorithms

find, count, copy, sort, shuffle, reverse, …



Software Design 1.4

Iterator specifics

An iterator is dereferenceable, like a pointer

*it is the object an iterator points to

An iterator accesses half-open ranges, [first..last), it can have a
value of last, but then not dereferenceable

Analagous to built-in arrays as we’ll see, one past end is ok

An iterator can be incremented to move through its range

Past-the-end iterators not incrementable

vector<int> v; for(int k=0; k < 23; k++) v.push_back(k);

vector<int>::iterator it = v.begin();
while (it != v.end()) { cout << *v << endl; v++;}



Software Design 1.5

Iterator as Pattern
(GOF) Provides access to elements of aggregate object
sequentially without exposing aggregate’s representation

Support multiple traversals

Supply uniform interface for different aggregates: this is
polymorphic iteration (see C++ and Java)

Solution: tightly coupled classes for storing and iterating

Aggregate sometimes creates iterator (Factory pattern)

Iterator knows about aggregate, maintains state

Forces and consequences

Who controls iteration (internal iterator, apply in MultiSet)?

Who defines traversal method?

Robust in face of insertions and deletions?



Software Design 1.6

STL overview

STL implements generic programming in C++

Container classes, e.g., vector, stack, deque, set, map

Algorithms, e.g., search, sort, find, unique, match, …

Iterators: pointers to beginning and one past the end

Function objects: less, greater, comparators

Algorithms and containers decoupled, connected by iterators

Why is decoupling good?

Extensible: create new algorithms, new containers, new
iterators, etc.

Syntax of iterators reflects array/pointer origins, an array
can be used as an iterator



Software Design 1.7

STL examples: wordlines.cpp

How does an iterator work?

Start at beginning, iterate until end: use [first..last) interval

Pointer syntax to access element and make progress

vector<int> v; // push elements
vector<int>::iterator first = v.begin();
vector<int>::iterator last  = v.end();
while (first < last) {
    cout << *first << endl;
    ++first;
}

Will the while loop work with an array/pointer?

In practice, iterators aren’t always explicitly defined, but
passed as arguments to other STL functions



Software Design 1.8

Review: what’s a map, STL/Tapestry

Maps keys to values

Insert key/value pair

Extract value given a key

STL uses red-black tree, Tapestry uses bst or hashtable

• STL unofficially has a hash_map, see SGI website

Performance and other trade-offs?

In Tapestry, there’s an inheritance hierarchy of tmap,
BSTMap, HMap

The hash-table requires map of string->value

• Makes programming simpler, too restrictive in practice

See tapwordlines.cpp


