
Duke CPS 108 33. 1

What is a pattern?

? “… a three part rule, which expresses a relation between a
certain context, a problem, and a solution. The pattern is, in
short, at the same time a thing, … , and the rule which tells us
how to create that thing, and when we must create it.”

Christopher Alexander

? name factory, aka virtual constructor
? problem delegate creation responsibility: Hyperwag
? solution createFoo() method returns aFoo, bFoo,...
? consequences potentially lots of subclassing, ...

? more a recipe than a plan, micro-architecture, frameworks,
language idioms made abstract, less than a principle but more
than a heuristic

? patterns capture important practice in a form that makes the
practice accessible

Duke CPS 108 33. 2

Patterns are discovered, not invented

? You encounter the same “pattern” in developing solutions to
programming or design problems
? develop the pattern into an appropriate form that makes it

accessible to others
? fit the pattern into a language of other, related patterns

? Patterns transcend programming languages, but not (always)
programming paradigms
? OO folk started the patterns movement
? language idioms, programming templates, programming

patterns, case studies

Duke CPS 108 33. 3

Pattern/Programming Interlude

? Microsoft interview question (1998)

? Dutch National Flag problem (1976)

? Remove Zeros (AP 1987)

? Quicksort partition (1961, 1986)

? Run-length encoding (SIGCSE 1998)

3 53 5 87 88

3 85 7

2 51 0 00 48

2 81 5 4

3 41 0 98 56

4 93 8 61 50

11 3 5 3 2 6 2 6 5 3 5 3 5 3 10

Duke CPS 108 33. 4

One loop for linear structures

? Algorithmically, a problem may seem to call for multiple
loops to match intuition on how control structures are used to
program a solution to the problem, but data is stored
sequentially, e.g., in an array or file. Programming based on
control leads to more problems than programming based on
structure.
Therefore, use the structure of the data to guide the
programmed solution: one loop for sequential data with
appropriately guarded conditionals to implement the control

Consequences: one loop really means loop according to
structure, do not add loops for control: what does the code
look like for run-length encoding example?

Duke CPS 108 33. 5

Coding Pattern

? Name:
? one loop for linear structures

? Problem:
? Sequential data, e.g., in an array or a file, must be

processed to perform some algorithmic task. At first it
may seem that multiple (nested) loops are needed, but
developing such loops correctly is often hard in practice.

? Solution:
? Let the structure of the data guide the coding solution. Use

one loop with guarded/if statements when processing one-
dimensional, linear/sequential data

? Consequences:
? Code is simpler to reason about, facilitates develop of loop

invariants, possibly leads to (slightly?) less efficient code

Duke CPS 108 33. 6

Design patterns you shouldn’t miss

? Iterator
? useful in many contexts, see previous examples, integral to

both C++ and Java
? Factory

? essential for developing OO programs/classes, e.g., create
iterator from a Java 1.2 List? list.iterator()

? Composite
? essential in GUI/Widget programming, widgets contain

collections of other widgets
? Command

? encapsulate a request as an object, supports undo, re-
usable commands (compare anonymous inner class)

? Observer/Observable, Publish/Subscribe, MVC
? separate the model from the view, smart updates

Duke CPS 108 33. 7

More Design Patterns

? Singleton
? a class has a single instance, enforce this via design rather

than convention
? Adapter/Façade

? replug-and-play, hide details
? Mediator

? define a class that encapsulates how other objects interact,
promote loose coupling since other objects interact with
mediator instead of with each other: Gui, App, Controller

? Proxy
? provide a surrogate/placeholder for ease of use, different

control: smart stack-based pointer for iterators in C++

Duke CPS 108 33. 8

CPS 108

? The software process
? how to make good programs, how to deliver good products
? know what questions to ask, scenarios and small examples

? Working in teams/groups on bigger programs
? managing teams, working together, using tools like CVS

? Knowledge of multiple programming languages
? C++, some low level details, what to expect from its C core
? Java, introduction, where to find useful packages
? compare/contrast, which language will you turn to?

? On becoming an object-oriented programmer and designer
? critique your own code, refactor to make simpler based on

ability to abstract and generalize
? use inheritance wisely, know about design patterns

