From STL to Java

e In STL an iterator is a concept, there are refinements

> Input, output, forward, bidirectional, random access
* A forward iterator is an input iterator and an output iterator
* The iterator may be immutable (or const)---read only

> Refinements not implemented by inheritance, but by
design, contract, and subsequently implementation

* What happens if you try to implement an STL iterator?

e In Java Iterator is an interface (like a base class), similar to
Tapestry iterators

> Collection(s) are required to have iterators, these are used in
some operations like max, min, construct vector, ...

> Related to STL as algorithm glue, but very different

. 71
Software Design



Wordlines.java, print strings, line #’s

public void print ()

{
Iterator allKeys = myMap.keySet() .iterator(); // words

while (allKeys.hasNext()) ({
String key = (String)allKeys.next() ;
System.out.print(key + "\t");
Iterator lines = ((Set)myMap.get(key)) .iterator():;
while (lines.hasNext()) {
System.out.print((Integer)lines.next() + " ");

}
System.out.println() ;

}
}

e Differences between Java and Tapestry in practice?
> Must store current element since next () does two things
> Must cast since Collections store Objects

. 7.2
Software Design



Interfaces, Comparator, Inner classes

e The java.util.Comparator interface is used in sorting
> Different from the java.lang.Comparable interface?
> What must be implemented?

® Suppose we want to change sort in WordLines
> If we change keySet to entrySet what's in ArrayList?

> Program compiles/does not run sorting Map.Entry objects
* How is this different from C++ behavior?

e How can we sort by size-of set while still sorting strings?
> Use anonymous inner class that implements Comparable
> Syntax is strange: create new interface
> Access local variables, but some rules on parameters

. 7.3
Software Design



Class and class design in Java

e Classes can be nested in Java
> Inner class has access to an object’s internal state

> Static Inner class doesn’t belong to an object

* Similar to use of Node we’ve seen in C++ programs
* Why should Node be nested, private?

> We will see anonymous inner classes later

Software Design

74



