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Chapter 1

Introduction

Fields such as robotics or computer vision are interdisciplinary subjects at the intersection of engineering and computer
science. By their nature, they deal with both computers and the physical world. Although the former are in the latter,
the workings of computers are best described in the black-and-white vocabulary of discrete mathematics, which is
foreign to most classical models of reality, quantum physics notwithstanding.

This class surveys some of the key tools of applied math to be used at the interface of continuous and discrete. It
is not on robotics or computer vision, nor does it cover any other application area. Applications evolve rapidly, but
their mathematical foundations remain. Even if you will not pursue any of these fields, the mathematics that you learn
in this class will not go wasted. To be sure, applied mathematics is a discipline in itself and, in many universities, a
separate department. Consequently, this class can be a quick tour at best. It does not replace calculus or linear algebra,
which are assumed as prerequisites, nor is it a comprehensive survey of applied mathematics. What is covered is a
compromise between the time available and what is useful and fun to talk about. Even if in some cases you may have
to wait until you take an applied class to fully appreciate the usefulness of a particular topic, | hope that you will enjoy
studying these subjects in their own right.

1.1 Who Should Take This Class

The main goal of this class is to present a collection of mathematical tools for both understanding and solving problems
in fields that manipulate models of the real world, such as robotics, artificial intelligence, vision, engineering, or several
aspects of the biological sciences. Several classes at most universities each cover some of the topics presented in this
class, and do so in much greater detail. If you want to understand the full details of any one of the topics in the
syllabus below, you should take one or more of these other classes instead. If you want to understand how these tools
are implemented numerically, you should take one of the classes in the scientific computing program, which again
cover these issues in much better detail. Finally, if you want to understand robatics, vision, or other applied fields, you
should take classes in these subjects, since this course is not on applications.

On the other hand, if you do plan to study robotics, vision, or other applied subjects in the future, and you regard
yourself as aiserof the mathematical techniques outlined in the syllabus below, then you may benefit from this course.
Of the proofs, we will only see those that add understanding. Of the implementation aspects of algorithms that are
available in, say, Matlab or LApack, we will only see the parts that we need to understand when we use the code.

In brief, we will be able to cover more topics than other classes because we will be often (but not always) un-
concerned with rigorous proof or implementation issues. The emphasis will be on intuition and on practicality of the
various algorithms. For instance, why are singular values important, and how do they relate to eigenvalues? What are
the dangers of Newton-style minimization? How does a Kalman filter work, and why do PDEs lead to sparse linear
systems? In this spirit, for instance, we discuss Singular Value Decomposition and Schur decomposition both because
they never fail and because they clarify the structure of an algebraic or a differential linear problem.
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1.2 Syllabus

Here is the ideal syllabus, but how much we cover depends on how fast we go.
1. Introduction
2. Unknown numbers

2.1 Algebraic linear systems
2.1.1 Characterization of the solutions to a linear system
2.1.2 Gaussian elimination
2.1.3 The Singular Value Decomposition
2.1.4 The pseudoinverse
2.2 Function optimization
2.2.1 Newton and Gauss-Newton methods
2.2.2 Levenberg-Marquardt method
2.2.3 Constraints and Lagrange multipliers

3. Unknown functions of one real variable

3.1 Ordinary differential linear systems

3.1.1 Eigenvalues and eigenvectors

3.1.2 The Schur decomposition

3.1.3 Ordinary differential linear systems

3.1.4 The matrix zoo

3.1.5 Real, symmetric, positive-definite matrices
3.2 Statistical estimation

3.2.1 Linear estimation

3.2.2 Weighted least squares

3.2.3 The Kalman filter

4. Unknown functions of several variables

4.1 Tensor fields of several variables
4.1.1 Grad, div, curl
4.1.2 Line, surface, and volume integrals
4.1.3 Green'’s theorem and potential fields of two variables
4.1.4 Stokes’ and divergence theorems and potential fields of three variables
4.1.5 Diffusion and flow problems

4.2 Partial differential equations and sparse linear systems
4.2.1 Finite differences
4.2.2 Direct versus iterative solution methods
4.2.3 Jacobi and Gauss-Seidel iterations
4.2.4 Successive overrelaxation

4.3 Calculus of variations

4.3.1 Euler-Lagrange equations
4.3.2 The brachistochrone

INTRODUCTION
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1.3 Discussion of the Syllabus

In robotics, vision, physics, and any other branch of science whose subject belongs to or interacts with the real
world, mathematical models are developed that describe the relationship between different quantities. Some of these
guantities are measured,s@nsegdwhile others are inferred by calculation. For instance, in computer vision, equations

tie the coordinates of points in space to the coordinates of corresponding points in different images. Image points are
data, world points are unknowns to be computed.

Similarly, in robotics, a robot arm is modeled by equations that describe where each link of the robot is as a
function of the configuration of the link’s own joints and that of the links that support it. The desired position of the
end effector, as well as the current configuration of all the joints, are the data. The unknowns are the motions to be
imparted to the joints so that the end effector reaches the desired target position.

Of course, what is data and what is unknown depends on the problem. For instance, the vision system mentioned
above could be looking at the robot arm. Then, the robot’s end effector position could be the unknowns to be solved
for by the vision system. Once vision has sol¥sgroblem, it could feed the robot’s end-effector position as data for
the robot controller to use in its own motion planning problem.

Sensed data are invariably noisy, because sensors have inherent limitations of accuracy, precision, resolution,
and repeatability. Consequently, the systems of equations to be solved are typically overconstrained: there are more
equations than unknowns, and it is hoped that the errors that affect the coefficients of one equation are partially
cancelled by opposite errors in other equations. This is the basipthizationproblems: Rather than solving a
minimal system exactly, an optimization problem tries to solve many equations simultaneously, each of them only
approximately, but collectively as well as possible, according to some global criterion. Least squares is perhaps the
most popular such criterion, and we will devote a good deal of attention to it.

In summary, the problems encountered in robotics and vision, as well as other applications of mathematics, are
optimization problems. A fundamental distinction between different classes of problems reflects the complexity of the
unknowns. In the simplest case, unknowns are scalars. When there is more than one scalar, the unknown is a vector
of numbers, typically either real or complex. Accordingly, the first part of this course will be devoted to describing
systems of algebraic equations, especially linear equations, and optimization techniques for problems whose solution
is a vector of reals. The main tool for understanding linear algebraic systems is the Singular Value Decomposition
(SVD), which is both conceptually fundamental and practically of extreme usefulness. When the systems are nonlinear,
they can be solved by various techniques of function optimization, of which we will consider the basic aspects.

Since physical quantities often evolve over time, many problems arise in which the unknowns are themselves
functions of time. This is our second class of problems. Again, problems can be cast as a set of equations to be solved
exactly, and this leads to the theory of Ordinary Differential Equations (ODESs). Here, “ordinary” expresses the fact
that the unknown functions depend on just one variable (e.g., time). The main conceptual tool for addressing ODEs is
the theory of eigenvalues, and the primary computational tool is the Schur decomposition.

Alternatively, problems with time varying solutions can be stated as minimization problems. When viewed glob-
ally, these minimization problems lead to the calculus of variations. When the minimization problems above are
studied locally, they become state estimation problems, and the relevant theory is that of dynamic systems and Kalman
filtering.

The third category of problems concerns unknown functions of more than one variable. The images taken by a
moving camera, for instance, are functions of time and space, and so are the unknown gquantities that one can compute
from the images, such as the distance of points in the world from the camera. This leads to Partial Differential equations
(PDESs), or to extensions of the calculus of variations. In this class, we will see how PDEs arise, and how they can be
solved numerically.
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1.4 Books

The class will be based on these lecture notes, and additional notes handed out when necessary. Other useful references
include the following.

R. Courant and D. Hilbertylethods of Mathematical Physidglume | and II, John Wiley and Sons, 1989.

e D. A. Danielson\ectors and Tensors in Engineering and Physiadlison-Wesley, 1992.
e J. W. DemmelApplied Numerical Linear Algebrs&SIAM, 1997.

A. Gelbet al, Applied Optimal EstimatiorMIT Press, 1974.

P. E. Gill, W. Murray, and M. H. WrightPractical Optimization Academic Press, 1993.

e G. H. Golub and C. F. Van LoaMatrix Computations2nd Edition, Johns Hopkins University Press, 1989, or
3rd edition, 1997.

e W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlidgmerical Recipes in C2nd Edition,
Cambridge University Press, 1992.

G. Strang]ntroduction to Applied Mathematic8yellesley- Cambridge Press, 1986.

A. E. Taylor and W. R. MannAdvanced Calculusird Edition, John Wiley and Sons, 1983.
e L. N. Trefethen and D. Bau, lINumerical Linear AlgebraSIAM, 1997.

R. WeinstockCalculus of VariationsDover, 1974.



Chapter 2

Algebraic Linear Systems

An algebraiclinear system is a set ofi equations inn unknown scalars, which appear linearly. Without loss of
generality, an algebraic linear system can be written as follows:

Ax=b (2.1)

whereA is anm x n matrix, X is ann-dimensional vector that collects all of the unknowns, brisl a known vector
of dimensionm. In this chapter, we only consider the cases in which the entrids lof andx are real numbers.

Two reasons are usually offered for the importance of linear systems. The first is apparently deep, and refers
to the principle of superposition of effects. For instance, in dynamics, superposition of forces states that if force
f; produces acceleratiom (both possibly vectors) and forde produces acceleratiom, then the combined force
f1 + of, produces acceleratiom + aay. This is Newton’s second law of dynamics, although in a formulation less
common than the equivaleht= ma. Because Newton’s laws are at the basis of the entire edifice of Mechanics,
linearity appears to be a fundamental principle of Nature. However, like all physical laws, Newton’s second law is an
abstraction, and ignores viscosity, friction, turbulence, and other nonlinear effects. Linearity, then, is perhaps more in
the physicist’s mind than in reality: if nonlinear effects can be ignored, physical phenomena are linear!

A more pragmatic explanation is that linear systems are the only ones we know how to solve in general. This
argument, which is apparently more shallow than the previous one, is actually rather important. Here is why. Given
two algebraic equations in two variables,

f(z,y)
g(%y) = 0,

we can eliminate, say, and obtain the equivalent system

Fz) = 0
y = h(z).

Thus, the original system is as hard to solve as it is to find the roots of the polynBrimia single variable. Unfortu-
nately, if f andg have degrees; andd,, the polynomialf’ has generically degregd,,.

Thus, the degree of a system of equations is, roughly speaking, the product of the degrees. For instance, a system of
m quadratic equations corresponds to a polynomial of de2jfedhe only case in which the exponential is harmless
is when its base i$, that is, when the system is linear.

In this chapter, we first review a few basic facts about vectors in sections 2.1 through 2.4. More specifically, we
develop enough language to talk about linear systems and their solutions in geometric terms. In contrast with the
promise made in the introduction, these sections contain quite a few proofs. This is because a large part of the course
material is based on these notions, so we want to make sure that the foundations are sound. In addition, some of the
proofs lead to useful algorithms, and some others prove rather surprising facts. Then, in section 2.5, we characterize
the solutions of linear algebraic systems.
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2.1 Linear (In)dependence

Givenn vectorsay, . .., a, andn real numbers:, ..., z,, the vector
b=> ;3 (2.2)
j=1
is said to be dinear combinatiorof ay, ..., a,, with coefficientsrq, ..., z,.
The vectorsay, ..., a, arelinearly dependenif they admit the null vector as a nonzero linear combination. In
other words, they are linearly dependent if there is a set of coefficignts. , z,,, not all of which are zero, such that
> 28 =0. (2.3)
j=1
For later reference, it is useful to rewrite the last two equalities in a different form. Equation (2.2) is the same as
Ax=Db (2.4)
and equation (2.3) is the same as
Ax=0 (2.5)
where
T bl
Tn b,

If you are not convinced of these equivalences, take the time to write out the components of each expression for a
small example. This is important. Make sure that you are comfortable with this.

Thus, the columns of a matriX are dependent if there is a nonzero solution to the homogeneous system (2.5).
Vectors that are not dependent ardependent

Theorem 2.1.1 The vectors, . . ., a, are linearly dependent fffat least one of them is a linear combination of the
others.

Proof.  In one direction, dependency means that there is a nonzero wesich that

n
ijaj =0.
Jj=1

Let z;, be nonzero for some. We have
n n
ijaj = xrrag + Z r;a,; =0
j=1 J=1,j#k

so that

a=- Y g (2.6)

14iff” means “if and only if.”
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for somek, then
Z T;a; = 0
j=1

by lettingz; = —1 (so thatx is nonzero). A?

We can make the first part of the proof above even more specific, and state the following

Lemma 2.1.2 If n nonzero vectoray, . .., a, are linearly dependent then at least one of them is a linear combination
of the ones thaprecedet.

Proof.  Just letk be thelastof the nonzerac;. Thenz; = 0 for j > k in (2.6), which then becomes

n

a, = Z%aj

i<k
as desired. A
2.2 Basis
Asetay,. .., a, is said to be dasisfor a setB of vectors if thea; are linearly independent and every vectoAican

be written as a linear combination of theifd.is said to be aector spacéf it containsall the linear combinations of
its basis vectors. In particular, this implies that every linear space contains the zero vector. The basis vectors are said
to spanthe vector space.

Theorem 2.2.1 Given a vectob in the vector spac# and a basisy, . .., a, for B, the coefficients, ..., z, such

that
b= Z Ijaj
j=1
are uniquely determined.

Proof. Letalso

n
b= Zl’;aj .
j=1

Then,
O=b-b= Z.’Ejaj — Zx;-aj = Z($J —x;-)aj
j=1 j=1 j=1
but because tha; are linearly independent, this is possible only when- =, = 0 for every;. A

The previous theorem is a very important result. An equivalent formulation is the following:

If the columnsy, ..., a, of A are linearly independent and the systetr = b admits a solution, then
the solution is unique.

2This symbol marks the end of a proof.
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Pause for a minute to verify that this formulation is equivalent.
Theorem 2.2.2 Two different bases for the same vector spBdeave the same number of vectors.

Proof. Letay,...,a, anda,...,a, be two different bases faB. Then eack’ is in B (why?), and can therefore
be written as a linear combination af, . . ., a,. Consequently, the vectors of the set

G=a,a,...,a,

must be linearly dependent. We call a set of vectors that contains a ba&tsafgenerating sefor B. Thus,G is a
generating set foB.

The rest of the proof now proceeds as follows: we keep remaoaingctors fromG and replacing them with’
vectors in such a way as to keépa generating set faB. Then we show that we cannot run outeofectors before we
run out ofa’ vectors, which proves that > n/. We then switch the roles afanda’ vectors to conclude that' > n.
This proves that = n’.

From lemma 2.1.2, one of the vectors(fis a linear combination of those preceding it. This vector cannat be
since it has no other vectors preceding it. So it must be one @f;thectors. Removing the latter keeFsa generating
set, since the removed vector depends on the others. Now we caf i, writing it right aftera; :

G=a,a,....

G is still a generating set faB.

Let us continue this procedure until we run out of eitherectors to remove o&' vectors to add. Tha vectors
cannot run out first. Suppose in fgeér absurdunthat G is now made only o vectors, and that there are still
left-overa’ vectors that have not been put irdb Since theg's form a basis, they are mutually linearly independent.
SinceB is a vector space, all thes are inB. But thenG cannot be a generating set, since the vectors in it cannot
generate the left-over’s, which are independent of thosedh This is absurd, because at every step we have made
sure thatG remains a generating set. Consequently, we must run aafsdirst (or simultaneously with the laaj.
Thatis,n > n'.

Now we can repeat the whole procedure with the rolea eéctors andd’ vectors exchanged. This shows that
n' > n, and the two results together imply that= n'. A

A consequence of this theorem is that any basi&f6rhasm vectors. In fact, the basis efementary vectors
e; = jth column of them x m identity matrix

is clearly a basis foR™, since any vector
by

bm
can be written as

b= ibjej
j=1

and thee; are clearly independent. Since this elementary basisrhasctors, theorem 2.2.2 implies that any other
basis forR™ hasm vectors.

Another consequence of theorem 2.2.2 is thaectors of dimensiom < n are bound to be dependent, since any
basis forR™ can only haven vectors.

Since all bases for a space have the same number of vectors, it makes sense to déifinerntsierof a space as
the number of vectors in any of its bases.
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2.3 Inner Product and Orthogonality

In this section we establish the geometric meaning of the algebraic notions of norm, inner product, projection, and
orthogonality. The fundamental geometric fact that is assumed to be knowrlas\tbécosinesgiven a triangle with
sidesa, b, ¢ (see figure 2.1), we have

a? =b% +¢* — 2bccos b

wheref is the angle between the sides of lengtiindc. A special case of this law is Pythagoras’ theorem, obtained
whenf = +7/2.

b
Figure 2.1: The law of cosines states that= b> + ¢? — 2bccos 6.

In the previous section we saw that any vectoRif can be written as the linear combination

m

b=> be (2.7)
j=1

of the elementary vectors that point along the coordinate axes. The length of these elementary vectors is clearly one,
because each of them goes from the origin to the unit point of one of the axes. Also, any two of these vectors form a
90-degree angle, because the coordinate axes are orthogonal by construction. HovToRgpis equation (2.7) we

obtain

b=0be + ijej
Jj=2

and the two vectors, e, andZ;.”Z2 b;e; are orthogonal. By Pythagoras’ theorem, the square of the ldjigjtbf b is

Ibl* =07 + 11> e .
=2

Pythagoras’ theorem can now be applied again to the last sum by singling out its firdi;®rnand so forth. In

conclusion,
m
2 _ 2
Ibl|> =" b3 .
j=1

This result extends Pythagoras’ theorermt@imensions.
If we define thenner productof two m-dimensional vectors as follows:

m
T P . .
b'c="> bic;
j=1

then
Ib|?=b"b . (2.8)

Thus, the squared length of a vector is the inner product of the vector with itself. Here and elsewhere, vectors are
columnvectors by default, and the symbbimakes them into row vectors.
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Theorem 2.3.1
b"c = b]|[|c|| cos 8
whered is the angle betweemnandc.
Proof.  The law of cosines applied to the triangle with sided, ||c||, and||b — c|| yields
Ib — ¢l = [Ibl|* + [ic||* — 2[b]| ||| cos
and from equation (2.8) we obtain
b’b +c’c—2b"c=b"b + c’c— 2||b| ||c|| cos b .

Canceling equal terms and dividing by -2 yields the desired result. A
Corollary 2.3.2 Two nonzero vectos andc in R™ are mutually orthogonal ifb” ¢ = 0.
Proof. When6 = +7/2, the previous theorem yieldg ¢ = 0. A

Given two vectord andc applied to the origin, thprojectionof b ontoc is the vector from the origin to the point
p on the line througlt that is nearest to the endpointlmnf See figure 2.2.

Figure 2.2: The vector from the origin to poinis the projection ob ontoc. The line from the endpoint df to p is
orthogonal tcc.

Theorem 2.3.3 The projection ob ontoc is the vector

p = Pcb
where P is the following square matrix:
ccl
Po=——.
€T e

Proof.  Since by definition poinp is on the line througte, the projection vectop has the formp = ac, where
a is some real number. From elementary geometry, the line betywemd the endpoint ab is shortest when it is
orthogonal tcc:

c’(b—ac)=0
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which yields
_c'p
~ cTc
so that
p=aC=cCa= ﬁ b
cTc
as advertised. A

2.4 Orthogonal Subspaces and the Rank of a Matrix

Linear transformations map spaces into spaces. It is important to understand exactly what is being mapped into what
in order to determine whether a linear system has solutions, and if so how many. This section introduces the notion of
orthogonality between spaces, defines the null space and range of a matrix, and its rank. With these tools, we will be
able to characterize the solutions to a linear system in section 2.5. In the process, we also introduce a useful procedure
(Gram-Schmidt) for orthonormalizing a set of linearly independent vectors.

Two vector spaced and B are said to berthogonalto one another when every vectordnis orthogonal to every
vector inB. If vector spaced is a subspace @™ for somem, then theorthogonal complemermf A is the set of all
vectors inR™ that are orthogonal to all the vectors4n

Notice that complement and orthogonal complement are very different notions. For instance, the complement of
thezy plane inR? is all of R® except thery plane, while the orthogonal complement of theplane is the: axis.

Theorem 2.4.1 Any basisay, .. ., a, for a subspaced of R™ can be extended into a basis fef* by addingm — n
vectorsa, i1, - - ., am.

Proof. If n = m we are done. I < m, the given basis cannot generate alR3f, so there must be a vector, call
it a,+1, that is linearly independent af, . . . , a,. This argument can be repeated until the basis spansRIl'pthat
is, untilm = n. A

Theorem 2.4.2 (Gram-Schmidt) Givenn vectorsay, .. ., a,, the following construction

r=20
forj=1ton
a;=a; — > (afay)q,
i laj ]| # 0
r=r+1
a;
qr = m
end
end

yields a set of orthonormdlvectorsq; . . ., q, that span the same spaceas. . ., a,.

Proof.  We first prove by induction on that the vectors), are mutually orthonormal. if = 1, there is little to
prove. The normalization in the above procedure ensures){ias unit norm. Let us now assume that the procedure

30rthonormal means orthogonal and with unit norm.
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above has been performed a numper1 of times sufficient to find- — 1 vectorsq,, ..., q,_;, and that these vectors
are orthonormal (the inductive assumption). Then for aayr we have

r—1

9/a, =afa; — > (d4/a;)a/q, =0

=1

because the tergy’ a; cancels theé-th term(q’ a;)q7 g; of the sum (remember thgf g, = 1), and the inner products
g7 g, are zero by the inductive assumption. Because of the explicit normalizatiog,stem; /|||, the vectom,., if
computed, has unit norm, and becaqga;- = 0, it follwos thatq,. is orthogonal to all its predecessogg,q,. = 0 for
i=1,...,r—1.

Finally, we notice that the vectors span the same space as #)s, because the former are linear combinations
of the latter, are orthonormal (and therefore independent), and equal in number to the number of linearly independent
vectors inay, . . ., a,. A

Theorem 2.4.31f A is a subspace d®®™ and A~ is the orthogonal complement dfin R™, then

dim(A) + dim(A+) =m .

Proof. Letay,...,a, be abasis fod. Extend this basis to a bass, . . ., a,, for R™ (theorem 2.4.1). Orthonor-
malize this basis by the Gram-Schmidt procedure (theorem 2.4.2) to ajytain , q,,,. By constructionq,...,q,
spanA. Because the new basis is orthonormal, all vectors generatgg by. .., q,, are orthogonal to all vectors
generated by, ,...,q,, So there is a space of dimension at least- n that is orthogonal tcd. On the other hand,
the dimension of this orthogonal space cannot exeeedn, because otherwise we would have more thavectors
in a basis folR™. Thus, the dimension of the orthogonal spaceis exactlym — n, as promised. A

We can now start to talk about matrices in terms of the subspaces associated with themll $pacenull(A) of
anm x n matrix A is the space of alh-dimensional vectors that are orthogonal to the rowd ofTherangeof A is
the space of alln-dimensional vectors that are generated by the column& dfhus,x € null(A) iff Ax = 0, and
b € rangd A) iff Ax = b for somex.

From theorem 2.4.3, if nl4) has dimensiork, then the space generated by the rowsidias dimensiom =
n — h, that is,A hasn — h linearly independent rows. It is not obvious that the space generated bglthrensof A
has also dimension= n — h. This is the point of the following theorem.

Theorem 2.4.4 The number- of linearly independent columns of any x n matrix A is equal to the number of its
independent rows, and
r=n-—~h

whereh = dim(null(A)).

Proof. We have already proven that the number of independent rows-ig.. Now we show that the number of
independent columns is also— h, by constructing a basis for rangé).

Letvy,...,v, be abasis for nulld), and extend this basis (theorem 2.4.1) into a besis. ., v,, for R". Then
we can show that the — h vectorsAvy 4, ..., Av, are a basis for the range df

First, theser — h vectors generate the range 4f In fact, given an arbitrary vectdr € rangé A), there must be
a linear combination of the columns dfthat is equal td. In symbols, there is an-tuplex such thatdx = b. The
n-tuplex itself, being an element &®™, must be some linear combinationwf, . . ., v,,, our basis foR":

n
X = ZCJ'V]‘ .
J=1



2.5. THE SOLUTIONS OF A LINEAR SYSTEM 15

Thus,

n

b=Ax = AiCjVj = iCjAVj = Z CjAVj
j=1 j=1

j=h+1

sincevy, ..., Vv, span nul{4), so thatdv, = 0 for j = 1,..., h. This proves that the — h vectorsAvy_1, ..., Av,
generate randel).

Second, we prove that the— h vectorsAvy 4, ..., Av,, are linearly independent. Suppogey absurdumthat
they are not. Then there exist numbeyfs 1, ..., z,, not all zero, such that

n

Z mjAVj =0

j=h+1

so that

A i lZEjVjZO.

j=h+1

But then the vectop_’_, ., x;v; is in the null space ofl. Since the vectors,, ..., v, are a basis for null), there
must exist coefficients, ..., x; such that

n h
E {EjVj = E .’EjVj s
j=h+1 j=1

in conflict with the assumption that the vecters. . ., v,, are linearly independent. A

Thanks to this theorem, we can define thek of A to be equivalently the number of linearly independent columns
or of linearly independent rows of:

rank(A) = dim(rangé A)) = n — dim(null(4)) .

2.5 The Solutions of a Linear System

Thanks to the results of the previous sections, we now have a complete picture of the four spaces associated with an
m x n matrix A of rankr and null-space dimensidn

rang€ A); dimensionr = rank(A)
null(4); dimensionk

rangg A)+; dimensionm — r
null(A)~+; dimensionr =n — h .

The space rangd )" is called theleft nullspaceof the matrix, and nuild)~ is called therowspaceof A. A
frequently used synonym for “range” é®lumn spacelt should be obvious from the meaning of these spaces that

null(4)* = rangéAT)
rangéA)t = null(AT)

whereA” is thetransposeof A, defined as the matrix obtained by exchanging the rows with its columns.

Theorem 2.5.1 The matrixA transforms a vector in its null space into the zero vector, and an arbitrary vector
into a vector inrangg A).



16 CHAPTER 2. ALGEBRAIC LINEAR SYSTEMS

This allows characterizing the set of solutions to linear system as follows. Let
Ax=D
be anm x n system {n can be less than, equal to, or greater thanAlso, let
r = rank(A)
be the number of linearly independent rows or columnd of hen,

b & range(A) = no solutions
b € range(A) = oo™ " solutions

with the convention thato® = 1. Here, oo is the cardinality of a&-dimensional vector space.

In the first case above, there can be no linear combination of the columréator) that gived, and the system
is said to beéncompatible In the secondgompatiblecase, three possibilities occur, depending on the relative sizes of
r,m,n.

e Whenr = n = m, the system isnvertible This means that there is exactly onthat satisfies the system, since
the columns ofd span all ofR™. Notice that invertibility depends only ao#, not onb.

e Whenr = n andm > n, the system isedundant There are more equations than unknowns, but dinisan
the range ofA there is a linear combination of the columns (a vesfpthat produce®. In other words, the
equations are compatible, and exactly one solution exists.

e Whenr < n the system isinderdeterminedThis means that the null space is nontriviag (it has dimension
h > 0), and there is a space of dimensior- n — r of vectorsx such thatdx = 0. Sinceb is assumed to be in
the range of4, there are solutionsto Ax = b, but then for any € null(A) alsox + y is a solution:

Ax=Db, Ay=0 = A(x+y)=hb
and this generates the = oo™~ solutions mentioned above.

Notice that ifr = n thenn cannot possibly exceed, so the first two cases exhaust the possibilities-fer n. Also,
r cannot exceed eithen or n. All the cases are summarized in figure 2.3.

Of course, listing all possibilities does not provide an operational method for determining the type of linear system
for a given pairA,b. Gaussian elimination, and particularly its version calleduction to echelon forrs such a
method, and is summarized in the next section.

2.6 Gaussian Elimination

Gaussian elimination is an important technique for solving linear systems. In addition to always yielding a solution,
no matter whether the system is invertible or not, it also allows determining the rank of a matrix.

Other solution techniques exist for linear systems. Most notably, iterative methods solve systems in a time that
depends on the accuracy required, while direct methods, like Gaussian elimination, are done in a finite amount of
time that can be bounded given only the size of a matrix. Which method to use depends on the size and structure
(e.g., sparsity) of the matrix, whether more information is required about the matrix of the system, and on numerical
considerations. More on this in chapter 3.

Consider then x n system

Ax=Dhb (2.9)

4Notice that the technical meaning of “redundant” has a stronger meaning than “with more equations than unknowns." 7 Thercasen is
possible, has more equations) than unknownsr), admits a solution ib € rang€ A), but is called “underdetermined” because there are fewer
(r) independent equations than there are unknowns (see next item). Thus, “redundant” means “with exactly one solution and with more equations
than unknowns.”
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b inrange(A)
yes no
r=n incompatible
yes no
m=n underdetermined
yes no
invertible redundant

Figure 2.3: Types of linear systems.

which can be square or rectangular, invertible, incompatible, redundant, or underdetermined. In short, there are no
restrictions on the system. Gaussian elimination replaces the rows of this system by linear combinations of the rows
themselves until is changed into a matrii that is in the so-calledchelon form This means that

e Nonzero rows precede rows with all zeros. The first nonzero entry, if any, of a row, is callecta
e Below each pivot is a column of zeros.
e Each pivot lies to the right of the pivot in the row above.

The same operations are applied to the rowd ahd to those oy, which is transformed to a new vecigrso equality
is preserved and solving the final system yields the same solution as solving the original one.
Once the system is transformed into echelon form, we compute the solutigrbacksubstitution, that is, by
solving the transformed system
Ux=c.

2.6.1 Reduction to Echelon Form

The matrix A is reduced to echelon form by a processrin— 1 steps. The first step is applied ") = A4 and
¢ = b. Thek-th step is applied to rows, ..., m of U*) andc®) and produce#’**1) andc*+1). The last step
produced/ (™) = U andc(™) = c. Initially, the “pivot column index’p is set to one. Here is stépwhereu;; denotes
entryi, j of U(F):

Skip no-pivot columns If u;, is zero for every = k, ..., m, then incremenp by 1. If p exceeds: stop®

Row exchangeNow p < n andu;, is nonzero for somé < i < m. Let! be one such value @f. If | +# k, exchange
rows! andk of U*) and ofc(®).

Triangularization The new entryuy, is nonzero, and is called th@vot Fori = k + 1,...,m, subtract rowt of
U*) multiplied by, /ux, from rowi of U*), and subtract entry of c*) multiplied by, /u,, from entryi
of c¥), This zeros all the entries in the column below the pivot, and preserves the equality of left- and right-hand
side.

When this process is finished, is in echelon form. In particular, if the matrix is square and if all columns have a
pivot, thenU is upper-triangular.

5"Stop” means that the entire algorithm is finished.
SDifferent ways of selecting here lead to different numerical properties of the algorithm. Selecting the largest entry in the column leads to
better round-off properties.
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2.6.2 Backsubstitution

A system
Ux=c (2.10)

in echelon form is easily solved far To see this, we first solve the system symbolically, leaving undetermined vari-
ables specified by their name, and then transform this solution procedure into one that can be more readily implemented
numerically.

Let r be the index of the last nonzero row©@f Since this is the number of independent rowd/of- is the rank
of U. Itis also the rank of4, becaused andU admit exactly the same solutions and are equal in size dfm, the
lastm — r equations yield a subsystem of the following form:

0 Cr41

0 Cm,

Let us call this theesidual subsystentf on the other hand = m (obviouslyr cannot exceeeh), there is no residual
subsystem.

If there is a residual systemé., » < m) and some o, 1, ..., ¢, are nonzero, then the equations corresponding
to these nonzero entries are incompatible, because they are of thé ferm with ¢; # 0. Since no vectok can
satisfy these equations, the linear system admits no solutions: it is incompatible.

Let us now assume that either there is no residual system, or if there is one it is compatiblecthatds,. .. =
¢m = 0. Then, solutions exist, and they can be determinedbdgksubstitutionthat is, by solving the equations
starting from the last one and replacing the result in the equations higher up.

Backsubstitutions works as follows. First, remove the residual system, if any. We are left withaisystem. In
this system, call the variables corresponding tortkelumns with pivots théasic variablesand call the othen — »
thefree variables Say that the pivot columns aje, . . ., j.. Thensymbolic backsubstitutioronsists of the following
sequence:

for ¢ =r downtol

1 n
Tj, = C; — E U1 ]

Uij,
ti l=j;+1

end

This is called symbolic backsubstitution because no numerical values are assigned to free variables. Whenever they
appear in the expressions for the basic variables, free variables are specified by name rather than by value. The final
result is a solution with as many free parameters as there are free variables. Since any value given to the free variables
leaves the equality of system (2.10) satisfied, the presence of free variables leads to an infinity of solutions.

When solving a system in echelon form numerically, however, it is inconvenient to carry around nonnumeric
symbol names (the free variables). Here is an equivalent solution procedure that makes this unnecessary. The solution
obtained by backsubstitution is an affine funcfiofithe free variables, and can therefore be written in the form

X=Vo+zx;Vi+...+T;, _ Vn_r (211)
where ther;, are the free variables. The vectgyis the solution when all free variables are zero, and can therefore be
obtained by replacing each free variable by zero during backsubstitution. Similarly, thewgelthoi = 1,...,n —r
can be obtained by solving the homogeneous system

Ux=0

with z;, = 1 and all other free variables equal to zero. In conclusion, the general solution can be obtained by running
backsubstitutiom — r + 1 times, once for the nonhomogeneous system anda times for the homogeneous system,
with suitable values of the free variables. This yields the solution in the form (2.11).

Notice that the vectorg,, ..., v, _, form a basis for the null space bf, and therefore ofl.

7An affine function is a linear function plus a constant.
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2.6.3 An Example

An example will clarify both the reduction to echelon form and backsubstitution. Consider the system

Ax=Db
where
1 3 3 2 1
UMD =A4=| 2 6 9 5 , cW=p=1|5
-1 -3 3 0 5

Reduction to echelon form transformisandb as follows. In the first stepk(= 1), there are no no-pivot columns,
so the pivot column index stays atl. Throughout this example, we choose a trivial pivot selection rule: we pick the
first nonzero entry at or below rofvin the pivot column. Fok = 1, this means that(lll) = ay; = listhe pivot. In
other words, no row exchange is neces$afe triangularization step subtracts row 1 multiplied by 2/1 from row 2,
and subtracts row 1 multiplied by -1/1 from row 3. When applied to 56thH andc") this yields

1 3 3 2 1
U@ =10 0 3 1 c® =13
00 6 2 6

Notice that now § = 2) the entriesuZ(f)) are zero fori = 2, 3, for bothp = 1 andp = 2, sop is set to 3: the second

pivot column is column 3, andé? is nonzero, so no row exchange is necessary. In the triangularization step, row 2
multiplied by 6/3 is subtracted from row 3 for botH? andc(® to yield

1 3 3 2 1
U=U0®=10 0 3 1 , c=c® =13
0000 0

There is one zero row in the left-hand side, and the rarik ahd that ofA is » = 2, the number of nonzero rows.
The residual system i = 0 (compatible), and < n = 4, so the system is underdetermined, with" " = o0o?
solutions.

In symbolic backsubstitution, the residual subsystem is first deleted. This yields the reduced system

BEHER

The basic variables are, andx3, corresponding to the columns with pivots. The other two variahlesand
x4, are free. Backsubstitution applied first to row 2 and then to row 1 yields the following expressions for the pivot
variables:

~( )= =B -2) =1
x3 = —(ca—uyry)=-B—24)=1—-x
3 s 2 24%4 3 4 3%4
1
ry = —(c1 —u12®2 — u13T3 — u1ar4) = —(1 — 3wp — 3wz — 214)
U1l 1

= 1-32z2—(3—24) —224=—-2—-3z0— 24

so the general solution is

—2 —3x9 — x4 -2 -3 -1

_ T2 _ 0 1 0
X = 1— %u = 1 + x2 0 + x4 _%
Ty 0 0 1

8Selecting the largest entry in the column at or below kois a frequent choice, and this would have caused rows 1 and 2 to be switched.
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This same solution can be found by the numerical backsubstitution method as follows. Solving the reduced system
(2.12) withzo = 24 = 0 by numerical backsubstitution yields

1
T3 = g(3—1-0):1
1
so that

-2
Vo — 0
|
0

Thenv; is found by solving the nonzero part (first two rows)é% = 0 with o = 1 andx4 = 0 to obtain

1

r3 = 3(-1:0)=0
1
T = I(—3-1—3-0—2~0):—3
so that
-3
Vi — 1
=10
0

Finally, solving the nonzero part &fx = 0 with x5 = 0 andx, = 1 leads to

1 1
s = —(=1-1)=-=
s s =—3
1 1
= (=3.0—-3-[==)=—2.1)= -1
1 1( 3-0—3 < 3> )
so that
—1
0
V2: _l
3
1
and
-2 -3 -1
0 1 0
X = Vg + x2V1 + 24Vy = 1 + xo 0 +2a| 1
3
0 0 1

just as before.

As mentioned at the beginning of this section, Gaussian eliminatiodireet method, in the sense that the answer
can be found in a number of steps that depends only on the size of the rhalmixhe next chapter, we study a different
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method, based on the so-called the Singular Value Decomposition (SVD). Thigésaive method, meaning that an
exact solution usually requires an infinite number of steps, and the number of steps necessary to find an approximate
solution depends on the desired number of correct digits.

This state of affairs would seem to favor Gaussian elimination over the SVD. However, the latter yields a much
more complete answer, since it computes bases for all the four spaces mentioned above, as well as a set of quantities,
called thesingular valueswhich provide great insight into the behavior of the linear transformation represented by
the matrixA. Singular values also allow defining a notionagfproximate rankvhich is very useful in a large number
of applications. It also allows finding approximate solutions when the linear system in question is incompatible. In
addition, for reasons that will become apparent in the next chapter, the computation of the SVD is numerically well
behaved, much more so than Gaussian elimination. Finally, very efficient algorithms for the SVD exist. For instance,
on a regular workstation, one can compute several thousand SVDs &fmatrices in one second. More generally,
the number of floating point operations necessary to compute the SVDmban matrix isamn? 4 bn® wherea, b
are small numbers that depend on the details of the algorithm.
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Chapter 3

The Singular Value Decomposition

In section 2, we saw that a matrix transforms vectors in its domain into vectors in its range (column space), and vectors
in its null space into the zero vector. No nonzero vector is mapped into the left null space, that is, into the orthogonal
complement of the range. In this section, we make this statement more specific by showingitwectors in the
rowspace are transformed by matrices. This describes the action that a matrix hasrayttieideof vectors as

well. To this end, we first need to introduce the notion of orthogonal matrices, and interpret them geometrically as
transformations between systems of orthonormal coordinates. We do this in section 3.1. Then, in section 3.2, we use
these new concepts to introduce the all-important concept of the Singular Value Decomposition (SVD). The chapter
concludes with some basic applications and examples.

3.1 Orthogonal Matrices

Let S be ann-dimensional subspace Bf" (so that we necessarily hawe< m), and letvy, ..., v,, be an orthonormal
basis forS. Consider a poinP in S. If the coordinates of in R™ are collected in am-dimensional vector

P1
p= : )
Pm

and sinceP is in S, it must be possible to writp as a linear combination of thgs. In other words, there must exist
coefficients

q1
a=| :

qn

such that
pP=q¢Vi+...+qV.=V(q
where
V=[vi - Vv, |

is anm x n matrix that collects the basis foras its columns. Then for any= 1, ..., n we have

n n
T T T
ViPp=V; Z%‘Vj = ZQJ'Vi Vi =4,
Jj=1 j=1

since thev; are orthonormal. This is important, and may need emphasis:

IVectors with unit norm.

23
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n
p= Z 4V
j=1

and the vectors of the basis, . . ., v,, are orthonormal, then the coefficienfs are the signed mag-
nitudes of the projections @fonto the basis vectors:

g =Vvip. (3.1)

In matrix form,
q=V7'p. (3.2)

Also, we can collect the? equations

ViVi= { 0 otherwise
into the following matrix equation:
viv =1 (3.3)

wherel is then x n identity matrix. A matrixV" that satisfies equation (3.3) is said tods¢hogonal Thus, a matrix
is orthogonal if its columns are orthonormal. Sincelgfeinverseof a matrixV' is defined as the matrik such that

LV =1, (3.4)

comparison with equation (3.3) shows that the left inverse of an orthogonal matexists, and is equal to the
transpose of/.

Of course, this argument requirsto be full rank, so that the solutioh to equation (3.4) is unique. Howevéf,
is certainly full rank, because it is made of orthonormal columns.

Notice thatV’ R = I cannot possibly have a solution when > n, because then x m identity matrix hasn
linearly independert columns, while the columns df R are linear combinations of thecolumns ofl/, soV R can
have at most linearly independent columns.

Of course, this result is still valid whe is m x m and has orthonormal columns, since equation (3.3) still holds.
However, for square, full-rank matrices £ m = n), the distinction between left and right inverse vanishes. In fact,
suppose that there exist matricesind R such thatLV = T andVR = I. ThenL = L(VR) = (LV)R = R, so the
left and the right inverse are the same. Thus, for square orthogonal makficés poth the left and the right inverse:

viv=vvT =1,
andV'T is then simply said to be thHaverseof V:
vi=v-1t.

Since the matriX¥/ V™ contains the inner products between thas of V' (just asV 'V is formed by the inner
products of itscolumng, the argument above shows that the rows sfjaareorthogonal matrix are orthonormal as
well. We can summarize this discussion as follows:

Theorem 3.1.1 The left inverse of an orthogonal x n matrix V" with m > n exists and is equal to the transpose of
V:
Vv =r.

In particular, if m = n, the matrixV’ —! = V7 is also the right inverse of:

Vsquare = VWW=vIv=vvi=vvl=r.

2Nay, orthonormal.
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Sometimes, whem = n, the geometric interpretation of equation (3.2) causes confusion, because two interpreta-
tions of it are possible. In the interpretation given above, the pBirgmains the same, and the underlying reference
frame is changed from the elementary vectergthat is, from the columns aof) to the vectorsy; (that is, to the
columns ofV’). Alternatively, equation (3.2) can be seen as a transformation, in a fixed reference system, &f point
with coordinate$ into a different pointp with coordinatesy. This, however, is relativity, and should not be surpris-
ing: If you spin clockwise on your feet, or if you stand still and the whole universe spins counterclockwise around
you, the result is the sande.

Consistently with either of these geometric interpretations, we have the following result:

Theorem 3.1.2 The norm of a vectox is not changed by multiplication by an orthogonal mafrix

Vx| = Il -

Proof.
IVx||? = xTVvTvx = xTx = ||x|?.

A

We conclude this section with an obvious but useful consequence of orthogonality. In section 2.3 we defined the
projectionp of a vectorb onto another vector as the point on the line throughthat is closest td. This notion of
projection can be extended from lines to vector spaces by the following definitiorprdjeetionp of a pointb € R™
onto a subspacé’ is the point inC' that is closest tb.

Also, for unit vectorsc, the projection matrix i€c” (theorem 2.3.3), and the vector— p is orthogonal tac. An
analogous result holds for subspace projection, as the following theorem shows.

Theorem 3.1.3 LetU be an orthogonal matrix. Then the matfiX/ " projects any vectob ontorangéU). Further-
more, the difference vector betwegand its projectiorp ontorangdU) is orthogonal torang€U ):

U'(b—p)=0.

Proof. A pointp inrang€U) is a linear combination of the columns Gt
p=Ux
wherex is the vector of coefficients (as many coefficients as there are colunifs ithe squared distance between
andpe Ib—p|>=(b-p)Tb-p)=b"b+pTp-2b"p=>bTb+xTUTUx - 20TUx .
Because of orthogonality/” U is the identity matrix, so
|b—p|> =bTb +xTx — 2b7Ux.
The derivative of this squared distance with respeatithe vector

ox —2UTh

3At least geometrically. One solution may be more efficient than the other in other ways.
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Figure 3.1: The matrix in equation (3.5) maps a circle on the plane into an ellipse in space. The two small boxes are
corresponding points.

which is zero iff
x=U"b,

that is, when
p=Ux=UUTb

as promised.
For this value op the difference vectdo — p is orthogonal to randé/), in the sense that

Ul'b—p)=UT(b-UUTb)=UTb-UTb=0.

3.2 The Singular Value Decomposition

In these notes, we have often used geometric intuition to introduce new concepts, and we have then translated these into
algebraic statements. This approach is successful when geometry is less cumbersome than algebra, or when geometric
intuition provides a strong guiding element. The geometric picture underlying the Singular Value Decomposition is
crisp and useful, so we will use geometric intuition again. Here is the main intuition:

An m x n matrix A of rank » maps ther-dimensional unit hypersphere in rowspédg into an -
dimensional hyperellipse in rangé).

This statement is stronger than saying tHamaps rowspadel) into rang¢A), because it also describes what
happens to thenagnitudesf the vectors: a hypersphere is stretched or compressed into a hyperellipse, which is a
guadratic hypersurface that generalizes the two-dimensional notion of ellipse to an arbitrary number of dimensions. In
three dimensions, the hyperellipse is an ellipsoid, in one dimension it is a pair of points. In all cases, the hyperellipse
in question is centered at the origin.

For instance, the rank-2 matrix

R
A= 713 :;) (3.5)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 3.1 shows the map

b= Ax.
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Two diametrically opposite points on the unit circle are mapped into the two endpoints of the major axis of the
ellipse, and two other diametrically opposite points on the unit circle are mapped into the two endpoints of the minor
axis of the ellipse. The lines through these two pairs of points on the unit circle are always orthogonal. This result can
be generalized to any. x n matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cumbersome. Instead, we
will prove it algebraically by first introducing the existence of the SVD and then using the latter to prove that matrices
map hyperspheres into hyperellipses.

Theorem 3.2.11f A is arealm x n matrix then there exist orthogonal matrices

U = [u - Uy |eR™™
1% [vi - v, |eR™™

such that
UTAV =¥ = diag(oy,...,0,) € R™*"

wherep = min(m,n) ando; > ... > o, > 0. Equivalently,

A=UxVT .

Proof. Letx andy be unit vectors irR™ andR™, respectively, and consider the bilinear form
2=yl Ax.

The set
S={xy[xeR" yeR", |x]|=]|yl=1}

is compact, so that the scalar functiofx, y) must achieve a maximum value Shpossibly at more than one potht
Letuy, v; be two unit vectors iR™ andR" respectively where this maximum is achieved, andriebe the corre-
sponding value of:
max yTAX = ulTAvl =07 .
IX|[I=llylI=1

It is easy to see that, is parallel to the vectorv;. If this were not the case, their inner produgtAv, could
be increased by rotating; towards the direction ofiv,, thereby contradicting the fact thaf Av, is a maximum.
Similarly, by noticing that

ul Avy = vl ATy,

and repeating the argument above, we seevthit parallel toAT u;.

By theorems 2.4.1 and 2.4.8; andv; can be extended into orthonormal basesR8t and R"™, respectively.
Collect these orthonormal basis vectors into orthogonal mattigesdV;. Then

T
U{Avlzslz{‘g 811} .

In fact, the first column ofAV; is Av; = ouy, so the first entry ot/ AV; is uTo1u; = 04, and its other entries
are u;fAvl = 0 becauseAv, is parallel tou; and therefore orthogonal, by constructionutg. .., u,,. A similar
argument shows that the entries after the first in the first rog afre zero: the row vectar A is parallel tov?’, and

therefore orthogonal ta,, . . ., v,,, so thau? Av, = ... = ul Av,, = 0.
The matrixA; has one fewer row and column than We can repeat the same constructiondgrand write
T
T | o2 O
U2A1V2—52—{0 A2:|

4Actually, at least at two points: iff Avy is a maximum, so i§—u; )T A(—vy).
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so that

1 oF

[1 o’
0 W

g1 0 OT
o 0t |-

0 ()] OT
0 0 A

This procedure can be repeated until vanishes (zero rows or zero columns) to obtain

e

UTAV =%

whereU”T andV are orthogonal matrices obtained by multiplying together all the orthogonal matrices used in the
procedure, and
Y =diag(o1,...,0p)

Since matrice$/ andV are orthogonal, we can premultiply the matrix product in the theorefi bypd postmultiply
it by V7T to obtain
A=UxvT

which is the desired result.

It only remains to show that the elements on the diagonal efe nonnegative and arranged in nonincreasing
order. To see that; > ... > o, (wherep = min(m,n)), we can observe that the successive maximization problems
that yieldo, ..., o, are performed on a sequence of sets each of which contains the next. To show this, we just need
to show thatry < o1, and induction will do the rest. We have

o = max Y AX= max [0 y}Tsl[Q]
IX][=[1ylI=1 IX||=[1Yl=1 X
= max [0 Y]TUlTAVl[Q]: max yrAx < oy .
I =[Yll=1 X Xl = [lyl =1

xTvy =yTu; =0

To explain the last equality above, consider the vectors
0 0
x_Vl[X] and y_Ul{y].

The vectorx is equal to the unit vectdd X]” transformed by the orthogonal matfi%, and is therefore itself a unit
vector. In addition, it is a linear combination @, ..., v,,, and is therefore orthogonal tq. A similar argument
shows thay is a unit vector orthogonal to,. Because andy thus defined belong to subsets (actually sub-spheres)
of the unit spheres iR™ andR™, we conclude that, < .

Theo; are nonnegative because all these maximizations are performed on unit hyper-sphesgs.aféenaxima
of the functionz(x,y) which always assumes both positive and negative values on any hyper-sphefe;:ylfis
negative, ther(—Xx, y) is positive, and ik is on a hyper-sphere, so-isx. A

We can now review the geometric picture in figure 3.1 in light of the singular value decomposition. In the process,
we introduce some nomenclature for the three matrices in the SVD. Consider the map in figure 3.1, represented by
equation (3.5), and imagine transforming painfthe small box ak on the unit circle) into its corresponding point
b = Ax (the small box on the ellipse). This transformation can be achieved in three steps (see figure 3.2):

1. Write x in the frame of reference of the two vectars v, on the unit circle that map into the major axes of the
ellipse. There are a few ways to do this, because axis endpoints come in pairs. Just pick one way, but order
V1, Vs SO they map into the major and the minor axis, in this order. Let usvgall, the tworight singular
vectorsof A. The corresponding axis unit vectass, u, on the ellipse are calleléft singular vectors If we
define

V= [ Vi Vq ] s



3.2. THE SINGULAR VALUE DECOMPOSITION 29

'
29

n

oy

n,

Figure 3.2: Decomposition of the mapping in figure 3.1.

the new coordinates of x become
E=V"x

becausé/ is orthogonal.

2. Transform¢ into its image on a “straight” version of the final ellipse. “Straight” here means that the axes of the
ellipse are aligned with thg;, y» axes. Otherwise, the “straight” ellipse has the same shape as the ellipse in
figure 3.1. If the lengths of the half-axes of the ellipsearer, (major axis first), the transformed vectphas
coordinates

n =3¢
where
g1 0
Y= 0 g9
0 0

is a diagonal matrix. The real, nonnegative numbersr, are called thesingular valuesf A.
3. Rotate the reference frame RI" = R? so that the “straight” ellipse becomes the ellipse in figure 3.1. This
rotation brings; along, and maps it tb. The components of are the signed magnitudes of the projections of

b along the unit vectors, us, us that identify the axes of the ellipse and the normal to the plane of the ellipse,
S0

where the orthogonal matrix

collects the left singular vectors df.
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We can concatenate these three transformations to obtain
b=UxvVTx

or
A=UxvVT

since this construction works for any pokbn the unit circle. This is the SVD of.

The singular value decomposition is “almost unique”. There are two sources of ambiguity. The first is in the
orientation of the singular vectors. One can flip any right singular vector, provided that the corresponding left singular
vector is flipped as well, and still obtain a valid SVD. Singular vectors must be flipped in pairs (a left vector and its
corresponding right vector) because the singular values are required to be nonnegative. This is a trivial ambiguity. If
desired, it can be removed by imposing, for instance, that the first nonzero entry of every left singular value be positive.

The second source of ambiguity is deeper. If the matrixaps a hypersphere into another hypersphere, the axes
of the latter are not defined. For instance, the identity matrix has an infinity of SVDs, all of the form

I1=vuIu”

whereU is any orthogonal matrix of suitable size. More generally, whenever two or more singular values coincide,
the subspaces identified by the corresponding left and right singular vectors are unique, but any orthonormal basis can
be chosen within, say, the right subspace and yield, together with the corresponding left singular vectors, a valid SVD.
Except for these ambiguities, the SVD is unique.
Even in the general case, the singular values of a mdtixe the lengths of the semi-axes of the hyperellipse
defined by
E={Ax: x| =1}.

The SVD reveals a great deal about the structure of a matrix. If we defige
012 ...20,>0p41=...=0,

that is, ifo,. is the smallest nonzero singular valueAfthen

rank(4) = r
null(A) = span{V,41,...,Vn}
range(A) = span{Uj,...,U.}.

The sizes of the matrices in the SVD are as followsis m x m, ¥ ism x n, andV isn x n. Thus,¥ has the
same shape and size dswhile U andV are square. However, if. > n, the bottom(m — n) x n block of ¥ is zero,
so that the lasth — n columns ofU are multiplied by zero. Similarly, ifn < n, the rightmostn x (n — m) block
of ¥ is zero, and this multiplies the last— m rows of V. This suggests a “small,” equivalent version of the SVD. If
p = min(m, n), we can definé/, =U(:,1:p), X, =3(1:p,1:p),andV, = V(:,1: p), and write

A=U,, V)

whereU, ism x p, ¥, isp x p, andV}, isn x p.
Moreover, ifp — r singular values are zero, we canlgt=U(:,1:7), 3, =3(1 :r,1:r),andV, =V (;,1: r),
then we have

T
A= U,ET‘/,T = ZO’,‘UiViT s
=1

which is an even smalleminimal SVD.
Finally, both the 2-norm and the Frobenius norm

Al =




3.3. THE PSEUDOINVERSE 31

e 4x]
X
[A]]2 = sup
x£0 ||
are neatly characterized in terms of the SVD:
IAlZ = of+...+0}
[All2 = o1.

In the next few sections we introduce fundamental results and applications that testify to the importance of the
SVD.

3.3 The Pseudoinverse

One of the most important applications of the SVD is the solution of linear systems in the least squares sense. A linear
system of the form
Ax=Db (3.6)

arising from a real-life application may or may not admit a solution, that is, a vethait satisfies this equation exactly.

Often more measurements are available than strictly necessary, because measurements are unreliable. This leads to
more equations than unknowns (the numieof rows in A is greater than the numberof columns), and equations

are often mutually incompatible because they come from inexact measurements (incompatible linear systems were
defined in chapter 2). Even when < n the equations can be incompatible, because of errors in the measurements
that produce the entries df. In these cases, it makes more sense to find a vedt@t minimizes the norm

[Ax = b

of theresidualvector
r=Ax—b.

where the double bars henceforth refer to the Euclidean norm. Xtaaginot exactly satisfy any of the equations
in the system, but it tries to satisfy all of them as closely as possible, as measured by the sum of the squares of the
discrepancies between left- and right-hand sides of the equations.
In other circumstances, not enough measurements are available. Then, the linear system (3.6) is underdetermined,
in the sense that it has fewer independent equations than unknowns (itsisdeks tham, see again chapter 2).
Incompatibility and underdeterminacy can occur together: the system admits no solution, and the least-squares
solution is not unique. For instance, the system

11+I2
1 +2x9 =

r3 =

has three unknowns, but rank 2, and its first two equations are incompatible:zz, cannot be equal to both 1 and

3. A least-squares solution turns out tosbe- [1 1 2]7 with residualr = Ax — b = [I — 1 0], which has norm/2
(admittedly, this is a rather high residual, but this is the best we can do for this problem, in the least-squares sense).
However, any other vector of the form

1 -1
X=1|11|+a«a 1
2 0

is as good as. For instancex’ = [0 2 2], obtained forv = 1, yields exactly the same residuaba&check this).
In summary, an exact solution to the system (3.6) may not exist, or may not be unique, as we learned in chapter 2.
An approximate solution, in the least-squares sense, always exists, but may fail to be unique.
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If there are several least-squares solutions, all equally good (or bad), then one of them turns out to be shorter than
all the others, that is, its nortx|| is smallest. One can therefore redefine what it means to “solve” a linear system so
that there is always exactly one solution. This minimum norm solution is the subject of the following theorem, which
both proves unigueness and provides a recipe for the computation of the solution.

Theorem 3.3.1 The minimum-norm least squares solution to a linear system= b, that is, the shortest vector
that achieves the

min ||AX — b]| |
X

is unique, and is given by

x=VxUTh (3.7)
where ) )

1/01 0 --- 0
i — 1/o,
0
i 00 0 |
is ann x m diagonal matrix.
The matrix

Al =vsiyT
is called thepseudoinversef A.
Proof. The minimum-norm Least Squares solution to

Ax=Db
is the shortest vectorthat minimizes
[AX — b

that is,

|USVTx —D|| .
This can be written as

UV - UTp)|| (3.8)

becausd/ is an orthogonal matrix/U” = I. But orthogonal matrices do not change the norm of vectors they are
applied to (theorem 3.1.2), so that the last expression above equals

|2VTx —UTb||
or, withy = VTx andc = U”b,
Xy —cf .

In order to find the solution to this minimization problem, let us spell out the last expression. We want to minimize the
norm of the following vector:

o1 0 07 10T 1

Y1 C1
0o . 0
Ir yr | | e
0 Yr+1 Cr41
0 0 L Yn | L Cm |
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The lastm — r differences are of the form

Cr41
00—
Cm
and do not depend on the unknownin other words, there is nothing we can do about those differences: if some or
allthec; fori =r+1,..., m are nonzero, we will not be able to zero these differences, and each of them contributes

aresidual|c¢;| to the solution. In each of the firstdifferences, on the other hand, the last » components of are
multiplied by zeros, so they have no effect on the solution. Thus, there is freedom in their choice. Since we look for
the minimum-norm solution, that is, for the shortest vegtorve also want the shortegt because andy are related

by an orthogonal transformation. We thereforeiset; = ... = y,, = 0. In summary, the desiregdhas the following
components:
Y, = S fori= 1,...,r
g
y, = 0 fori=r+1,....n.

When written as a function of the vectarthis is
y=%%c.

Notice that there is no other choice fgrwhich is therefore unique: minimum residual forces the choieg of. . , v,
and minimum-norm solution forces the other entrieyofThus, the minimum-norm, least-squares solution to the
original system is the unique vector

x=Vy=Vxtc=vtuTb

as promised. The residual, that is, the nornj| dk — b|| whenx is the solution vector, is the norm &y — c, since
this vector is related telx — b by an orthogonal transformation (see equation (3.8)). In conclusion, the square of the
residual is ” m
IAX = bl = [y —c[* = > = ) (ub)?
i=r+1 i=r+1
which is the projection of the right-hand side vedbiaonto the complement of the range Af A

3.4 Least-Squares Solution of a Homogeneous Linear Systems

Theorem 3.3.1 works regardless of the value of the right-hand side \ecf@henb = 0, that is, when the system is
homogeneoyshe solution is trivial: the minimum-norm solution to

Ax =0 (3.9)

is
Xx=0,

which happens to be an exact solution. Of course it is not necessarily the only one (any vector in the null gpace of
is also a solution, by definition), but it is obviously the one with the smallest norm.

Thus,x = 0 is the minimum-norm solution to any homogeneous linear system. Although correct, this solution is
not too interesting. In many applications, what is desirednsmzerovectorx that satisfies the system (3.9) as well
as possible. Without any constraints xarwe would fall back tax = 0 again. For homogeneous linear systems, the
meaning of a least-squares solution is therefore usually modified, once more, by imposing the constraint

X[ =1
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on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily adiapitea
solution. The following theorem provides a recipe for finding this solution, and shows that there is in general a whole
hypersphere of solutions.

Theorem 3.4.1 Let
A=UxvT

be the singular value decomposition4f Furthermore, lew,, x4, . .., V,, be thek columns of whose correspond-
ing singular values are equal to the last singular valyg that is, letk be the largest integer such that

Op—k+l1=...=0Op .
Then, all vectors of the form
X=01Vp_fa1+ ...+ QpVy (3.10)
with
4. tai=1 (3.11)
are unit-norm least squares solutions to the homogeneous linear system
Ax =0,
that is, they achieve the
min || AX]| .
IX]|=1

Note: whens,, is greater than zero the most common cade4s1, since it is very unlikely that different singular
values havexactlythe same numerical value. Whehis rank deficient, on the other case, it may often have more
than one singular value equal to zero. In any everit,# 1, then the minimum-norm solution is unique= v,,. If
k > 1, the theorem above shows how to expraiésolutions as a linear combination of the lastolumns ofV/.

Proof. The reasoning is very similar to that for the previous theorem. The unit-norm Least Squares solution to

Ax=0
is the vectox with ||x|| = 1 that minimizes
[ AX]]
that is,
lUsVTx| .

Since orthogonal matrices do not change the norm of vectors they are applied to (theorem 3.1.2), this norm is the same
as
1=V x|
or, withy = V7Tx,
Iyl -
SinceV is orthogonal||x|| = 1 translates td|y|| = 1. We thus look for the unit-norm vectgrthat minimizes the
norm (squared) ofly, that is,
Ufyf+...+oiyi.

This is obviously achieved by concentrating all the (unit) masswhere thess are smallest, that is by letting

Y1=-..=Yn—r =0. (3.12)
Fromy = VT x we obtainx = Vy = 3V, + ... + y,V,, SO that equation (3.12) is equivalent to equation (3.10) with
a1 = Yn—k+1, - - -, Ok = Yn, and the unit-norm constraint gryields equation (3.11). A

Section 3.5 shows a sample use of theorem 3.4.1.
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3.5 SVD Line Fitting

The Singular Value Decomposition of a matrix yields a simple method for fitting a line to a set of points on the plane.

3.5.1 Fitting a Line to a Set of Points

Letp, = (v;,9;)” be a set ofn > 2 points on the plane, and let
axr+by—c=0

be the equation of a line. If the lefthand side of this equation is multiplied by a nonzero constant, the line does not
change. Thus, we can assume without loss of generality that

In|=a*>+b*=1, (3.13)

where the unit vecton = (a, b)”, orthogonal to the line, is called thiee normal
The distance from the line to the origin|ig (see figure 3.3), and the distance between therliaad a poinp;, is
equal to
di = |az; +by; — ¢| = |pin—|. (3.14)

/
/

/
o,
blL__/_

/
/
/

[
[
!
|
[
l
a

Figure 3.3: The distance between pgint= (z;,y;)” and lineax + by — ¢ = 0 is |az; + by; — c|.

The best-fit line minimizes the sum of the squared distances. Thus, if we fet (dy,...,d,,) and P =
Py ---,P,n)T, the best-fit line achieves the
min ||d||?> = min ||[Pn—c1?. (3.15)
nj=1 Inj=1

In equation (3.15)1 is a vector ofmm ones.

3.5.2 The Best Line Fit

Since the third line parameteidoes not appear in the constraint (3.13), at the minimum (3.15) we must have

oldl? _

o 0. (3.16)

If we define the centroig of all the pointsp; as

1
p=—PT1
m

)
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equation (3.16) yields

odlI* 9 [ por T
ol ac<n PT 1 )(Pn—lc)
_ 9 (nTPTPn + 21T 2nTPTcl)
Oc

= 2 (mc — nTPTl) =0

from which we obtain )
c=—ntpPT1,
m

that is,
c=pin.

By replacing this expression into equation (3.15), we obtain

min ||d||> = min ||Pn—1p'n||? = min ||Qn|?,
in [[d]" = wmin | "= min [I@n]
whereQ = P — 1p” collects thecenteredcoordinates of then points. We can solve this constrained minimization
problem by theorem 3.4.1. Equivalently, and in order to emphasize the geometric meaning of signular values and
vectors, we can recall thatiifis on a circle, the shortest vector of the foén is obtained whem is the right singular
vectorvy corresponding to the smaller of the two singular values af. Furthermore, sincévs, has normo,, the
residue is
min ||d]| = o9
[min {|d|

and more specifically the distancésare given by
d= ooUs

whereus is the left singular vector correspondingde. In fact, whemn = v,, the SVD
2
Q=UsV" =) ouv/
=1

yields
2

@n=Qvy = ZU@‘UiViTVz = 02Uz
i=1
because; andv,y are orthonormal vectors.
To summarize, to fit a linéa, b, c) to a set ofm pointsp, collected in them x 2 matrix P = (p; ...,p,,)",
proceed as follows:

1. compute the centroid of the pointsi6 a vector ofm ones):

1
p=—PT1
m

2. form the matrix of centered coordinates:
Q=P-1p"

3. compute the SVD of Q:
Q=UxvT



3.5. SVD LINE FITTING

4. the line normal is the second column of thex 2 matrix V':

n:(a,b)T:VQ,

5. the third coefficient of the line is
c=p'n

6. the residue of the fit is
min [|d|| = o9
Inf=1

The followingmatlab code implements the line fitting method.

function [l, residue] = linefit(P)

% check input matrix sizes

[m n] = size(P);

if n "= 2, error(matrix P must be m x 2), end
if m < 2, error(Need at least two points’), end
one = ones(m, 1);

% centroid of all the points

p= (P *one)/ m

% matrix of centered coordinates

Q =P -one * p;

[U Sigma V] = svd(Q);

% the line normal is the second column of V

n = V(_, 2);
% assemble the three line coefficients into a column vector
l'=[n; p" *n]

% the smallest singular value of Q
% measures the residual fitting error
residue = Sigma(2, 2);

A useful exercise is to think how this procedure, or something close to it, can be adapted to fit a set of data points
in R™ with an affine subspace of given dimensionAn affine subspace is a linear subspace plus a point, just like an
arbitrary line is a line through the origin plus a point. Here “plus” means the followingLlbet a linear space. Then

an affine space has the form

A=p+L={ala=p+landleL}.

Hint: minimizing the distance between a point and a subspace is equivalent to maximizing the norm of the projection
of the point onto the subspace. The fitting problem (including fitting a line to a set of points) can be cast either as a

maximization or a minimization problem.
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Chapter 4

Function Optimization

There are three main reasons why most problems in robotics, vision, and arguably every other science or endeavor
take on the form of optimization problems. One is that the desired goal may not be achievable, and so we try to get as
close as possible to it. The second reason is that there may be more ways to achieve the goal, and so we can choose
one by assigning a quality to all the solutions and selecting the best one. The third reason is that we may not know
how to solve the system of equatiof{g) = O, so instead we minimize the norjffi(x)||, which is a scalar function of

the unknown vectox.

We have encountered the first two situations when talking about linear systems. The case in which a linear system
admits exactly one exact solution is simple but rare. More often, the system at hand is either incompatible (some say
overconstrained) or, at the opposite end, underdetermined. In fact, some problems are both, in a sense. While these
problems admit no exact solution, they often admit a multitude of approximate solutions. In addition, many problems
lead to nonlinear equations.

Consider, for instance, the problem of Structure From Motion (SFM) in computer vision. Nonlinear equations
describe how points in the world project onto the images taken by cameras at given positions in space. Structure from
motion goes the other way around, and attempts to solve these equations: image points are given, and one wants to
determine where the points in the world and the cameras are. Because image points come from noisy measurements,
they are not exact, and the resulting system is usually incompatible. SFM is then cast as an optimization problem.
On the other hand, the exact system (the one with perfect coefficients) is often close to being underdetermined. For
instance, the images may be insufficient to recover a certain shape under a certain motion. Then, an additional criterion
must be added to define what a “good” solution is. In these cases, the noisy system admits no exact solutions, but has
many approximate ones.

The term “optimization” is meant to subsume both minimization and maximization. However, maximizing the
scalar functionf (x) is the same as minimizing f(x), so we consider optimization and minimization to be essentially
synonyms. Usually, one is after global minima. However, global minima are hard to find, since they involve a universal
quantifier: x* is a global minimum off if for every otherx we havef(x) > f(x*). Global minization techniques
like simulated annealing have been proposed, but their convergence properties depend very strongly on the problem at
hand. In this chapter, we consider local minimization: we pick a starting ggirend we descend in the landscape of
f(X) until we cannot go down any further. The bottom of the valley is a local minimum.

Local minimization is appropriate if we know how to pick &g that is close toc*. This occurs frequently in
feedback systems. In these systems, we start at a local (or even a global) minimum. The system then evolves and
escapes from the minimum. As soon as this occurs, a control signal is generated to bring the system back to the
minimum. Because of this immediate reaction, the old minimum can often be used as a starting wbien looking
for the new minimum, that is, when computing the required control signal. More formally, we reach the correct
minimumx* as long as the initial point, is in thebasin of attractiorof x*, defined as the largest neighborhoocbdf
in which f(x) is convex.

Good references for the discussion in this chapteMatix ComputationsPractical OptimizationandNumerical
Recipes in Call of which are listed with full citations in section 1.4.
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4.1 Local Minimization and Steepest Descent

Suppose that we want to find a local minimum for the scalar fungtiofithe vector variable, starting from an initial
pointxy. Picking an appropriate, is crucial, but also very problem-dependent. We start frgnand we go downhill.
At every step of the way, we must make the following decisions:

e Whether to stop.

e In what direction to proceed.

e How long a step to take.

In fact, most minimization algorithms have the following structure:

k=0
while X, is not a minimum
compute step directiop,, with ||p,|| = 1
compute step sizey,
Xip4+1 = Xi + agPy
k=k+1
end.

Different algorithms differ in how each of these instructions is performed.

It is intuitively clear that the choice of the step sizg is important. Too small a step leads to slow convergence,
or even to lack of convergence altogether. Too large a step causes overshooting, that is, leaping past the solution. The
most disastrous consequence of this is that we may leave the basin of attraction, or that we oscillate back and forth
with increasing amplitudes, leading to instability. Even when oscillations decrease, they can slow down convergence
considerably.

What is less obvious is that the best direction of descent is not necessarily, and in fact is quite rarely, the direction
of steepest descent, as we now show. Consider a simple but important case,

f(x) =c+al'x+ %XTQX (4.1)

whereQ is a symmetric, positive definite matrifositive definiteneans that for every nonzexahe quantityx” Qx
is positive. In this case, the graph pfx) — c is a planea’x plus a paraboloid.
Of course, iff were this simple, no descent methods would be necessary. In fact the minimjucanfoe found
by setting its gradient to zero: 5
f
X a+Qx=0
so that the minimunx* is the solution to the linear system

Qx=-a. (4.2)

Since( is positive definite, it is also invertible (why?), and the solutidnis unique. However, understanding the
behavior of minimization algorithms in this simple case is crucial in order to establish the convergence properties of
these algorithms for more general functions. In fact, all smooth functions can be approximated by paraboloids in a
sufficiently small neighborhood of any point.

Let us therefore assume that we minimigeas given in equation (4.1), and that at every step we choose the
direction of steepest descent. In order to simplify the mathematics, we observe that if we let

60 = 5 ()T Qx — x°)
then we have

20 = F9) — e+ X T QK = f(x) ~ F(x) (43)
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so thaté and f differ only by a constant. In fact,

1 1 1 1
&(x) = 5(xTQx +x*TQx* —2xTQx*) = 5xTQx +alx+ §X*TQX* =f(X)—c+ §X*TQX*

and from equation (4.2) we obtain
fxX)=c+ al'x* + %X*TQX* =c— X*TQX* + %X*TQX* =c— %X*TQX* :
The result (4.3),
e(x) = f(x) = fF(xX),

is rather interesting in itself. It says that adding a linear tafir (and a constant) to a paraboloid%xTQx merely

shifts the bottom of the paraboloid, both in positioti ¢ather thar0) and value ¢ — %X*TQX* rather than zero).
Adding the linear term does not “warp” or “tilt” the shape of the paraboloid in any way.
Sinceé is simpler, we consider that we are minimiziégather thanf. In addition, we can let

y:X_X*a

that is, we can shift the origin of the domainxb, and study the function

e(y) = %yTQy

instead off or &, without loss of generality. We will transform everything backft@andx once we are done. Of
course, by construction, the new minimum is at
y'=0

wheree reaches a value of zero:
e(y*) = e(0) = 0.
However, we let our steepest descent algorithm find this minimum by starting from the initial point
Yo = Xo — X" .

At every iterationk, the algorithm chooses the direction of steepest descent, which is in the direction

O
Pr=—"77
P gl
opposite to the gradient efevaluated ay, :
Oe
9 = 9(Y) = o = QY -
ay Y=Y,

We select for the algorithm the most favorable step size, that is, the one that takes yg footine lowest point in
the direction ofp,,. This can be found by differentiating the function

1
e(y, +apg) = §(Yk- +ap,) QY + apy)
with respect tay, and setting the derivative to zero to obtain the optimal stgep/Ve have

de(y, + apy,)

o = (y), + op,) " Qpy,

and setting this to zero yields

gggk .
ol Qg

pgpk
pLQpy,

QyL)'p gip
ap = DB Pe _ GiPx 0

pLQpy, pLQp;,

= llgl (4.4)
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Thus, the basic step of our steepest descent can be written as follows:

Yerr = Yi + 19|l 9. 9 P
* g7 Qo
that is,
gggk
-y, — : 4.5
Yir1 = Vi nggkgk (4.5)

How much closer did this step bring us to the solutyjgn= 0? In other words, how much smallerdsy, , ,),
relative to the value(y,,) at the previous step? The answer is, often not much, as we shall now prove. The arguments
and proofs below are adapted from D. G. Luenberggmduction to Linear and Nonlinear Programmingddison-
Wesley, 1973.

From the definition ot and from equation (4.5) we obtain

er) —eWr) _ YeQYr —Yin @in
e(Yr) Yi QY
T T T
- (e glage) Qv - gl o)
Vi QY
T T 2
gl ot~ (ghag) 9o
Yi QY
_ 200 9:90 QYi — (059)”
Yi QYr G Qs

Since( is invertible we have

9. =Qy, = Y,=Q g

and
ViQY, =0rQ 7',
so that
e(Yr) —e(Yri1) _ (gggk)Q
e(Yr) g Q719,91 Qg

This can be rewritten as follows by rearranging terms:

T \2
e(Yy41) = (1 %) e(Y) (4.6)

C gfQ g, of

so if we can bound the expression in parentheses we have a bound on the rate of convergence of steepest descent. To
this end, we introduce the following result.

Lemma 4.1.1 (Kantorovich inequality) Let@ be a positive definite, symmetricx n matrix. For any vectoy there
holds

y'y)?  _  doion
YIQ-lyyTQy ~— (o1 + 0,)?

whereo; ando,, are, respectively, the largest and smallest singular valu&g.of
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Proof. Let
Q=UxUT

be the singular value decomposition of the symmetric (héhee U) matrix (). Because) is positive definite, all its
singular values are strictly positive, since the smallest of them satisfies

o, = min y'Qy >0

yl=1
by the definition of positive definiteness. If we let
z=UTy
we have N
(yTy)? _ (yTUTUy)? _ (272)? _ /Y00 9(0) @.7)
yrQ-lyyTQy yTUS-'WTyyTUXUTy 2'S~'z7'S¥z 30, 0;/0i (o) '
where the coefficients
22
0; = ——=
]I
add up to one. If we let
o= bi0;, (4.8)
=1

then the numeratap(o) in (4.7) is1/0. Of course, there are many ways to choose the coefficignts obtain a
particular value otr. However, each of the singular values can be obtained by letting; = 1 and all otherd; to

zero. Thus, the valuel/o; for j = 1,...,n are all on the curvéd/o. The denominator)(o) in (4.7) is a convex
combination of points on this curve. Sintéos is a convex function of, the values of the denominatg(o) of (4.7)

must be in the shaded area in figure 4.1. This area is delimited from above by the straight line that connects point
(01,1/01) with point (0,,,1/0,,), that is, by the line with ordinate

Mo)=(o1+0,—0)/(0104) .

For the same vector of coefficierts the values of(c), (o), andA(o) are on the vertical line corresponding to
the value ofr given by (4.8). Thus an appropriate bound is

P(o) > . P(o) . 1/o

U(0) = 12020, No)  ar120%0n (01 + 00— 0)/(0100)

The minimum is achieved at = (o1 + 0,,)/2, yielding the desired result. A

Thanks to this lemma, we can state the main result on the convergence of the method of steepest descent.

Theorem 4.1.2 Let

1
fx)=c+alx+ 5xTQx

be a quadratic function of, with @ symmetric and positive definite. For axy, the method of steepest descent

91 95
X1 = Xp — o’ Qo O (4.9)
where
9 = 9(Xk) = %ﬁ =a+ QX

X=Xp,
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Figure 4.1: Kantorovich inequality.

converges to the unique minimum point

of f. Furthermore, at every stepthere holds

01— 0On

FOesn) — F(¢) < ( ) (%) — Fx°))

o1+ 0pn

whereos; ando,, are, respectively, the largest and smallest singular valu@.of
Proof.  From the definitions
1
y=x—-x* and e(y)= §yTQy (4.10)

we immediately obtain the expression for steepest descent in terfhammdx. By equations (4.3) and (4.6) and the
Kantorovich inequality we obtain

78 2 4 n
fe1) = FXT) = e(Ypq1) = (1 - m%%) e(yy) < (1 - M) e(y,) (4.11)

= ("1 — 0'")2 (FO) = F(X)) - (4.12)

o1+ op

Since the ratio in the last term is smaller than one, it follows immediatelyfthat) — f(x*) — 0 and hence, since
the minimum off is unique, thak, — x*. A

The ratiox(Q) = o1 /0, is called thecondition numbef Q. The larger the condition number, the closer the
fraction (o1 — 0,,)/(01 + 04,) is to unity, and the slower convergence. It is easily seen why this happens in the case
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o

Figure 4.2: Trajectory of steepest descent.

in which x is a two-dimensional vector, as in figure 4.2, which shows the trajestoisuperimposed on a set of
isocontours off ().

There is one good, but very precarious case, namely, when the startingp@@rat one apex (tip of either axis)
of an isocontour ellipse. In that case, one iteration will lead to the minimtumin all other cases, the line in the
directionp,, of steepest descent, which is orthogonal to the isocontayy, atill not pass througlx*. The minimum
of f along that line is tangent to some other, lower isocontour. The next step is orthogonal to the latter isocontour (that
is, parallel to the gradient). Thus, at every step the steepest descent trajectory is forced to make a ninety-degree turn.
If isocontours were circless{ = o,,) centered ax*, then the first turn would make the new direction pointtpand
minimization would get there in just one more step. This case, in whi¢h) = 1, is consistent with our analysis,

because then
01 — Op

o1+ 0opn

The more elongated the isocontours, that is, the greater the condition nudbethe farther away a line orthogonal
to an isocontour passes froth, and the more steps are required for convergence.

For general (that is, non-quadratif) the analysis above applies ongggets close enough to the minimum, so
that f is well approximated by a paraboloid. In this caQds the matrix of second derivatives gfwith respect to,
and is called thélessiarof f. In summary, steepest descent is good for functions that have a well conditioned Hessian
near the minimum, but can become arbitrarily slow for poorly conditioned Hessians.

To characterize the speed of convergence of different minimization algorithms, we introduce the notion of the
order of convergenceThis is defined as the largest valuegdbr which the

X — X*
o DX =]
K=o X —x*[J4

is finite. If 3 is this limit, then close to the solution (that is, for large valueg)ofve have
[Xp1 = X*[| = Bl|xK — x|
for a minimization method of order. In other words, the distance »f from x* is reduced by the-th power at every

step, so the higher the order of convergence, the better. Theorem 4.1.2 implies that steepest descent has at best a linear
order of convergence. In fact, the residugléx,) — f(x*)| in the valuesof the function being minimized converge
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linearly. Since the gradient gf approaches zero wheq tends tox*, thearguments;, to f can converge ta* even
more slowly.

To complete the steepest descent algorithm we need to specify how to check whether a minimum has been reached.
One criterion is to check whether the valuefgk;) has significantly decreased frofiix;_1). Another is to check
whetherxy, is significantly different fronx,_,. Close to the minimum, the derivatives ¢fare close to zero, so
|f(Xx) — f(Xk—1)| may be very small bufx;, — xx—_1|| may still be relatively large. Thus, the check xpnis more
stringent, and therefore preferable in most cases. In fact, usually one is interested in the x&Juatbér than in that
of f(x*). In summary, the steepest descent algorithm can be stopped when

X — Xp—1|| < €

where the positive constaats provided by the user.

In our analysis of steepest descent, we used the HeQsimonrder to compute the optimal step sizésee equation
(4.4)). We used) because it was available, but its computation during steepest descent would in general be overkill. In
fact, only gradient information is necessary to find and a line search in the directionmf can be used to determine
the step sizev;. In contrast, the Hessian ¢fx) requires computingg) second derivatives i is ann-dimensional
vector.

Using line search to findy, guarantees that a minimum in the directipp is actually reached even when the
parabolic approximation is inadequate. Here is how line search works.

Let

ho) = f(Xk + apy,) (4.13)

be the scalar function of one variable that is obtained by restricting the fun€tmthe line through the current point
X; and in the direction op,. Line search first determines two points: that bracket the desired minimumy, in the
sense that < «; < ¢, and then picks a point betweerandec, say,b = (a + ¢)/2. The only difficulty here is to
find c. In fact, we can set = 0, corresponding through equation (4.13) to the starting pqintA point ¢ that is on
the opposite side of the minimum with respect:toan be found by increasingthrough valuesy; = a, as, ... until
h(«;) is greater tharh(c;—1). Then, if we can assume thatis convex between; andca;, we can set = «;. In
fact, the derivative of at a is negative, so the function is initially decreasing, but it is increasing betweenand
a; = ¢, so the minimum must be somewhere betweamdc. Of course, if we cannot assume convexity, we may find
the wrong minimum, but there is no general-purpose fix to this problem.

Line search now proceeds by shrinking the bracketing t(i@lé, ¢) until c— a is smaller than the desired accuracy
in determiningy,. Shrinking works as follows:

fb—a>c—-0
u=(a+0b)/2
it f(u) > f(b)
(a,b,c) = (u,b,c)
otherwise
(a,b,c) = (a,u,b)
end
otherwise
u=(b+c)/2
it f(u) > £(b)
(a,b,c) = (a,b,u)
otherwise
(a,b,c) = (b,u,c)
end
end.
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It is easy to see that in each case the bracketing t(iplé, c) preserves the property th@{b) < f(a) and
f(b) < f(e), and therefore the minimum is somewhere betweandc. In addition, at every step the interv@l, ¢)
shrinks to3/4 of its previous size, so line search will find the minimum in a number of steps that is logarithmic in the
desired accuracy.

4.2 Newton’s Method

If a function can be well approximated by a paraboloid in the region in which minimization is performed, the analysis

in the previous section suggests a straight-forward fix to the slow convergence of steepest descent. In fact, equation
(4.2) tells us how to jump in one step from the starting painto the minimumx*. Of course, whery(x) is not

exactly a paraboloid, the new value will be different fromx*. Consequently, iterations are needed, but convergence

can be expected to be faster. This is the idea of Newton’s method, which we now summarize. Let

1
f(Xp + AX) &~ f(xp.) +0F Ax + iAxTQkAx (4.14)

be the first terms of the Taylor series expansiorf about the current poing,, where

of
g =9(Xx) = =
OX |y—x,
and
f ... 0% f
Ox2 O0x10x,
0%f !
Qk = Q(Xk) = IXOXT = .
X:Xk 82f 82f
Ox,0x1 e ox2 X=X,

are the gradient and Hessian pfevaluated at the current poiry. Notice that even wherf is a paraboloid, the
gradientg, is different froma as used in equation (4.1). In faetand@ are the coefficients of the Taylor expansion
of f around poinx = 0, while g, and@,, are the coefficients of the Taylor expansionfofround thecurrentpoint
Xi. In other words, gradient and Hessian are constantly reevaluated in Newton’s method.

To the extent that approximation (4.14) is valid, we can set the derivativésxgf+ Ax) with respect toAx to
zero, and obtain, analogously to equation (4.2), the linear system

QrAX = —0; , (4.15)

whose solutiomrAx;, = ap;, Yields at the same time the step directipn = Ax;/||Axx|| and the step size;, =
[lAxg||. The direction is of course undefined once the algorithm has reached a minimum, that isymhen
A minimization algorithm in which the step directiqmy and sizen, are defined in this manner is calldigwton’s
method The corresponding,, is termed théNewton directionand the step defined by equation (4.15) isktesvton
step
The greater speed of Newton’s method over steepest descent is borne out by analysis: while steepest descent has a
linear order of convergence, Newton’s method is quadratic. In fact, let

be the place reached by a Newton step starting @ee equation (4.15)), and suppose that at the mininctithe
Hessian®)(x*) is nonsingular. Then

becausg(x*) = 0, and
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From the mean-value theorem, we have

1] 2
R

2 | OxOXT |y _x

e =T = Iy =y6) < | [ 5] s

whereX is some point on the line betwe&h andx;. Sincey(x*) = x*, the first derivatives of atx* are zero, so that
the first term in the right-hand side above vanishes, and

X =X < e lxi — 7

wherec depends on third-order derivatives phearx*. Thus, the convergence rate of Newton’s method is of order at
least two.

For a quadratic function, as in equation (4.1), steepest descent takes many steps to converge, while Newton’s
method reaches the minimum in one step. However, this single iteration in Newton's method is more expensive,
because it requires both the gradigptand the Hessian), to be evaluated, for a total of + ( ) derivatives. In
addition, the Hessian must be inverted, or, at least, system (4.15) must be solved. For very large problems, in which
the dimensiom of x is thousands or more, storing and manipulating a Hessian can be prohibitive. In contrast, steepest
descent requires the gradiemt for selecting the step directign,, and a line search in the directiqm to find the
step size. The method of conjugate gradients, discussed in the next section, is motivated by the desire to accelerate
convergence with respect to the steepest descent method, but without paying the storage cost of Newton’s method.

4.3 Conjugate Gradients

Newton’s method converges faster (quadratically) than steepest descent (linear convergence rate) because it uses more
information about the functioff being minimized. Steepest descent locally approximates the function with planes,
because it only uses gradient information. All it can do is to go downhill. Newton’s method approxifnati&s
paraboloids, and then jumps at every iteration to the lowest point of the current approximation. The bottom line is that
fast convergence requires work that is equivalent to evaluating the Hessfan of

Prima facie the method of conjugate gradients discussed in this section seems to violate this principle: it achieves
fast, superlinear convergence, similarly to Newton’s method, but it only requires gradient information. This paradox,
however, is only apparent. Conjugate gradients works by takisteps for each of the steps in Newton’s method.

It effectively solves the linear system (4.2) of Newton’s method, but it does so by a sequenom@fdimensional
minimizations, each requiring one gradient computation and one line search.

Overall, the work done by conjugate gradients is equivalent to that done by Newton’s method. However, system
(4.2) is never constructed explicitly, and the maif}xis never stored. This is very important in cases whehas
thousands or even millions of components. These high-dimensional problems arise typically from the discretization
of partial differential equations. Say for instance that we want to compute the motion of points in an image as a
consequence of camera motion. Partial differential equations relate image intensities over space and time to the motion
of the underlying image features. At every pixel in the image, this motion, callechtition field is represented by
a vector whose magnitude and direction describe the velocity of the image feature at that pixel. Thus, if an image
has, say, a quarter of a million pixels, there are= 500,000 unknown motion field values. Storing and inverting a
500,000 x 500, 000 Hessian is out of the question. In cases like these, conjugate gradients saves the day.

The conjugate gradients method described in these notes is the so-called Podaik-Ribiation. It will be intro-
duced in three steps. First, it will be developed for the simple case of minimizing a quadratic function with positive-
definite and known Hessian. This quadratic functfgr) was introduced in equation (4.1). We know that in this case
minimizing f(x) is equivalent to solving the linear system (4.2). Rather than an iterative method, conjugate gradients
is a direct method for the quadratic case. This means that the number of iterations is fixed. Specifically, the method
converges to the solution in steps, where: is the number of components vf Because of the equivalence with
a linear system, conjugate gradients for the quadratic case can also be seen as an alternative method for solving a
linear system, although the version presented here will only work if the matrix of the system is symmetric and positive
definite.
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Second, the assumption that the HesgJan expression (4.1) is known will be removed. As discussed above, this
is the main reason for using conjugate gradients.

Third, the conjugate gradients method will be extended to general functions In this case, the method is no
longer direct, but iterative, and the cost of finding the minimum depends on the desired accuracy. This occurs because
the Hessian of is no longer a constant, as it was in the quadratic case. As a consequence, a certain property that holds
in the quadratic case is now valid only approximately. In spite of this, the convergence rate of conjugate gradients is
superlinear, somewhere between Newton’s method and steepest descent. Finding tight bounds for the convergence rate
of conjugate gradients is hard, and we will omit this proof. We rely instead on the intuition that conjugate gradients
solves system (4.2), and that the quadratic approximation becomes more and more valid as the algorithm converges
to the minimum. If the functiory starts to behave like a quadratic function early, that ig,ig nearly quadratic in a
large neighborhood of the minimum, convergence is fast, as it requires closertcstbps that are necessary in the
guadratic case, and each of the steps is simple. This combination of fast convergence, modest storage requirements,
and low computational cost per iteration explains the popularity of conjugate gradients methods for the optimization
of functions of a large number of variables.

4.3.1 The Quadratic Case

Suppose that we want to minimize the quadratic function
1
f(x)=c+a'x+ §xTQx (4.16)

where( is a symmetric, positive definite matrix, archasn components. As we saw in our discussion of steepest
descent, the minimum* is the solution to the linear system

Qx = -a. (4.17)

We know how to solve such a system. However, all the methods we have seen so far involve explicit manipulation
of the matrix@. We now consider an alternative solution method that does not@ebkdt only the quantity

g, = QX +a

that is, the gradient of (x), evaluated at different pointsxy, . . ., X,,. We will see that the conjugate gradients method
requiresn gradient evaluations andline searchem lieu of eachn x n matrix inversion in Newton’s method.

Formal proofs can be found in Elijah Pola®ptimization — Algorithms and consistent approximatj@ringer,
NY, 1997. The arguments offered below appeal to intuition.

Consider the case = 3, in which the variable in f(x) is a three-dimensional vector. Then the quadratic function
f(x) is constant over ellipsoids, callésbsurfacescentered at the minimumi*. How can we start from a poindy
on one of these ellipsoids and reachby a finite sequence of one-dimensional searches? In connection with steepest
descent, we noticed that for poorly conditioned Hessians orthogonal directions lead to many small steps, that is, to
slow convergence.

When the ellipsoids are spheres, on the other hand, this works much better. The first step takggdromand
the line betweernx, andx; is tangent to an isosurfaceat. The next step is in the direction of the gradient, so that
the new directiorp, is orthogonal to the previous directiquy. This would then take us t®* right away. Suppose
however that we cannot afford to compute this special diregtioorthogonal top,,, but that we can only compute
somedirectionp, orthogonal tq,, (there is am — 1-dimensional space of such directions!). It is easy to see that in
that casen steps will take us ta*. In fact, since isosurfaces are spheres, each line minimization is independent of the
others: The first step yields the minimum in the space spanngg.lifie second step then yields the minimum in the
space spanned lpy, andp,, and so forth. After, steps we must be done, singg. . ., p,,_; span the whole space.

In summary, any set of orthogonal directions, with a line search in each direction, will lead to the minimum for
spherical isosurfaces. Given an arbitrary set of ellipsoidal isosurfaces, there is a one-to-one mapping with a spherical
system: ifQ = UXU7 is the SVD of the symmetric, positive definite maté then we can write

Lerox = Lyt
X Qx=3y'y
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where
y=x"2U"x. (4.18)

Consequently, there must be a condition for the original problem (in teri®$ tifat is equivalent to orthogonality for
the spherical problem. If two directioms andq; are orthogonal in the spherical context, that is, if

a;9; =0,

what does this translate into in terms of the directippandp for the ellipsoidal problem? We have
Q;; = EI/ZUTpi,j )
so that orthogonality fog, ; becomes
p;US?S2UTp; =0

or

P/ Qp; =0. (4.19)
This condition is calledy-conjugacy or Q-orthogonality if equation (4.19) holds, thep; andp, are said to be
-conjugate o)-orthogonal to each other. We will henceforth simply say “conjugate” for brevity.

In summary, if we can fine directionsp,, . .., p,,_; that are mutually conjugate, and if we do line minimization
along each directiop,,, we reach the minimum in at moststeps. Of course, we cannot use the transformation (4.18)
in the algorithm, becausg and especiallyy” are too large. So now we need to find a method for generating
conjugate directions without using eith@ror its SVD. We do this in two steps. First, we find conjugate directions
whose definitions do involvg. Then, in the next subsection, we rewrite these expressions without

Here is the procedure, due to Hestenes and Stibfeti{ods of conjugate gradients for solving linear systeins

Res. Bureau National Standards, section B, Vol 49, pp. 409-436, 1952), which also incorporates the stepsofrom
Xn!

do = 9(xo0)

Po = -0

fork=0...,n—1
o = argming>o f(Xg + apy,)
Xi+1 = Xi + Py,
Ort1 = 9(Xk+1)

T
" QP
= B,
Prt1 = —Gkt1 T 7Py
end
where of
gr = 9(Xx) = X X,

is the gradient off atxy.
It is simple to see that, andp, , are conjugate. In fact,

ngkarl = ng(_ng + YPy)

g£+1ka
PE Qpy,

_ T T _

= —PrQYi1 + 95 1@Pr=0.

It is somewhat more cumbersome to show {haandp, , , fori = 0,..., k are also conjugate. This can be done by
induction. The proof is based on the observation that the vepjosse found by a generalization of Gram-Schmidt
(theorem 2.4.2) to produce conjugate rather than orthogonal vectors. Details can be found in Polak’s book mentioned
earlier.

= —pfQY 1 + PL QP
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4.3.2 Removing the Hessian

The algorithm shown in the previous subsection is a correct conjugate gradients algorithm. However, it is computa-
tionally inadequate because the expressionyfocontains the Hessiaf), which is too large. We now show thaj
can be rewritten in terms of the gradient valggsandg, , , only. To this end, we notice that

Okr1 = O + arQpy ,

or
arQPy = g1 — O -
In fact,
g(x) = a+ QX
so that

Ori1 = 9(Xkt1) = 9(Xe + arPy,) = @+ Q(Xi + axpPy) = g, + QP -

We can therefore write . . .
%1 QP i1k @P  Gir1(Grar — Gi)

pfQp,  Prar@pr P (Ges1 — i)

and@ has disappeared.
This expression foty, can be further simplified by noticing that

T
PiOky1 =0
because the line alorgy, is tangent to an isosurfacext, ;, while the gradieng, , is orthogonal to the isosurface at
Xk+1. Similarly,
Pi_19, =0.
Then, the denominator af, becomes

PE(Ges1 — 9e) = —PE O, = (9 — Yh—1Pe—1)" O = L Oy, -

In conclusion, we obtain theolak-Ribere formula

_ g£+1(gk+1 —0)
gfgk

4.3.3 Extension to General Functions

We now know how to minimize the quadratic function (4.16)isteps, without ever constructing the Hessian explic-
itly. When the functionf (x) is arbitrary, the same algorithm can be used.

However,n iterations will not suffice. In fact, the Hessian, which was constant for the quadratic case, now is a
function ofx;,.. Strictly speaking, we then lose conjugacy, sipgeandp, , are associated to different Hessians.
However, as the algorithm approaches the minimgnthe quadratic approximation becomes more and more valid,
and a few cycles of, iterations each will achieve convergence.
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Chapter 5

Eigenvalues and Eigenvectors

Given a linear transformation
b = Ax,

the singular value decompositioch = UXV T of A transforms the domain of the transformation via the mattix
and its range via the matrix”' so that the transformed system is diagonal. In fact, the equiatiert/ XV 7'x can be
written as follows

UTb=%v7Tx,

that is,
c=2xy

where
y=VTx and c=UTb,

and whereX is diagonal. This is a fundamental transformation to use whenever the domain and the rangeeof
separate spaces. Often, however, domain and range are intimately related to one another even independently of the
transformationA. The most important example is perhaps that of a system of linear differential equations, of the form

X = AX

whereA isn x n. For this equation, the fact thatis square is not a coincidence. In facts assumed to be a function
of some real scalar variabigoften time), andk is the derivative ok with respect ta:
«— dx
S odt

In other words, there is an intimate, pre-existing relation betweandx, and one cannot change coordinatesxor
without also changing those faraccordingly. In fact, ifi” is an orthogonal matrix and we define

y=V"x,

then the definition ok forces us to transform by V7' as well:

dVTx 7 dX T
7 =V E_V X.

In brief, the SVD does nothing useful for systems of linear differential equations, because it diagaadlizeso
different transformations, one for the domain and one for the range, while we need a single transformation. Ideally,
we would like to find an orthogonal matrix and a diagonal matriA such that

A= SAST (5.1)

53
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so that if we define
y =STx

we can write the equivalent bdtagonaldifferential system

y=Ay.

This is now much easier to handle, because it is a systemrafependent, scalar differential equations, which can be
solved separately. The solutions can then be recombined through

x=29y.

We will see all of this in greater detail soon.

Unfortunately, writingA in the form (5.1) is not always possible. This stands to reason, because now we are
imposing stronger constraints on the terms of the decomposition. It is like doing an SVD but with the additional
constraintyU = V. If we refer back to figure 3.1, now the circle and the ellipse live in the same space, and the
constraint/ = V implies that the vectorg; on the circle that map into the axegu; of the ellipse are parallel to the
axes themselves. This will only occur for very special matrices.

In order to make a decomposition like (5.1) possible, we weaken the constraints in several ways:

e the elements of andA are allowed to be complex, rather than real;
¢ the elements on the diagonal dfare allowed to be negative; in fact, they can be even non-real;
e Sisrequired to be only invertible, rather than orthogonal.

To distinguish invertible from orthogonal matrices we use the syrgbfar invertible andS for orthogonal. In some
cases, it will be possible to diagonaliZeby orthogonal transformatiors andS”'. Finally, for complex matrices we
generalize the notion of transpose by introducingieemitianoperator: The matriK)” (pronounced ) Hermitian”)

is defined to be the complex conjugate of the transposg &f ( happens to be real, conjugate transposition becomes
simply transposition, so the Hermitian is a generalization of the transpose. A riasrsaid to beunitary if

SHS =88" =T,

so unitary generalizes orthogonal for complex matrices. Unitary matrices merely rotate or flip vectors, in the sense
that they do not alter the vectors’ norms. For complex vectors, the norm squared is defined as

Ix[* = x*x

)

and if S'is unitary we have
|Sx||* = xH S Sx = xHx = ||x||* .

Furthermore, ifk; andx, are mutuallyorthogonal in the sense that
xfxy =0,
thenSx; andSx, are orthogonal as well:
xHSHSxy =xHxy = 0.

In contrast, a nonunitary transformatiGhcan change the norms of vectors, as well as the inner products between
vectors. A matrix that is equal to its Hermitian is called a Hermitian matrix.
In summary, in order to diagonalize a square matrifrom a system of linear differential equations we generally
look for a decomposition aft of the form
A=QAQ! (5.2)
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where@ andA are complex( is invertible, andA is diagonal. For some special matrices, this may specialize to
A= SASH

with unitary S.
Whenever two matriced and B, diagonal or not, are related by

A=QBQ™,

they are said to bsimilar to each other, and the transformation®finto A (and vice versa) is called gimilarity
transformation.
The equatiod = QAQ ! can be rewritten as follows:

AQ = QA
or separately for every column ¢f as follows:
Ag,; = \iq; (5.3)
where
Q= [ q, --- Qq, } and A =diag(Ai,..., ) -

Thus, the columns aj, of @ and the diagonal entries of A are solutions of theigenvalue/eigenvectequation
AX = XX, (5.4)

which is how eigenvalues and eigenvectors are usually introduced. In contrast, waehigedthis equation from the
requirement of diagonalizing a matrix by a similarity transformation. The columisar calleceigenvectorsand
the diagonal entries of are called eigenvalues.

1k

Figure 5.1: Effect of the transformation (5.5) on a sample of points on the unit circle. The dashed lines are vectors that
do not change direction under the transformation.

That real eigenvectors and eigenvalues do not always exist can be clarified by considering the eigenvalue problem
from a geometrical point of view in the = 2 case. As we know, an invertible linear transformation transforms the
unit circle into an ellipse. Each point on the unit circle is transformed into some point on the ellipse. Figure 5.1 shows
the effect of the transformation represented by the matrix

A= { 2(/)3 4/2‘/5 ] (5.5)
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for a sample of points on the unit circle. Notice that there are many transformations that map the unit circle into the
same ellipse. In fact, the circle in figure 5.1 can be rotated, pulling the solid lines along. Each rotation yields another
matrix A, but the resulting ellipse is unchanged. In other words, the curve-to-curve transformation from circle to
ellipse is unique, but the point-to-point transformation is not. Matrices represent point-to-point transformations.

The eigenvalue problem amounts to finding agesy, that are mapped into themselves by the original transfor-
mation A (see equation (5.3)). In figure 5.1, the two eigenvectors are shown as dashed lines. Notice that they do not
correspond to the axes of the ellipse, and that they are not orthogonal. Equation (5.4) is homogexesuis dan
be assumed to be a unit vector without loss of generality.

Given that the directions of the input vectors are generally changed by the transforvhati®rvident from figure
5.1, it is not obvious whether the eigenvalue problem admits a solution at all. We will see that the answer depends
on the matrixA, and that a rather diverse array of situations may arise. In some cases, the eigenvalues and their
eigenvectors exist, but they are complex. The geometric intuition is hidden, and the problem is best treated as an
algebraic one. In other cases, all eigenvalues exist, perhaps all real, but not enough eigenvectors can be found, and the
matrix A cannot be diagonalized. In particularly good cases, there azal, orthonormal eigenvectors. In bad cases,
we have to give up the idea of diagonalizidgand we can only triangularize it. This turns out to be good enough for
solving linear differential systems, just as triangularization was sufficient for solving linear algebraic systems.

5.1 Computing Eigenvalues and Eigenvectors Algebraically

Let us rewrite the eigenvalue equation
AX = AX

as follows:
(A= XDx=0. (5.6)

This is a homogeneous, square system of equations, which admits nontrivial solutions iff theAnatiX is rank-
deficient. A square matri® is rank-deficient iff itsdeterminant

b if Bis1x 1
B = { $ ey () oerise

is zero. In this expressiom;; is thealgebraic complemertf entry b;;, defined as thén — 1) x (n — 1) matrix
obtained by removing rowand columry from B.

Volumes have been written about the properties of the determinant. For our purposes, it is sufficient to recall the
following properties from linear algebra:

o det(B) = det(BT);

o det([ by --- b, ])=0iff by,...,b, are linearly dependent;

o det([ by bi -+ bj - b, ])=—det([by -+ b; - b; -~ b, ]);
o det(BC) = det(B) det(C).

Thus, for system (5.6) to admit nontrivial solutions, we need
det(A— M) =0. (5.7)

From the definition of determinant, it follows, by very simple induction, that the left-hand side of equation (5.7)
is a polynomial of degree in A, and that the coefficient of” is 1. Therefore, equation (5.7), which is called the
characteristic equatioof A, hasn complex solutions, in the sense that

det(A — A1) = (—=1)"(A— A1) ..o (A — An)

where some of tha; may coincide. In other words, anx n matrix has at most distinct eigenvalues. The case of
exactlyn distinct eigenvalues is of particular interest, because of the following results.
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Theorem 5.1.1 Eigenvectorxy, . . ., X; corresponding to distinct eigenvalugs, . . ., A are linearly independent.

Proof. Suppose that;x; + ...+ cxXr = 0 where thex; are eigenvectors of a matrik. We need to show that then
c1 = ... = ¢, = 0. By multiplying by A we obtain

C1AX1 + ...+ AX, =0
and becausgy, . ..., X; are eigenvectors corresponding to eigenvalugs. ., A, we have
CANX1+ .o cAeXy =0 (58)

However, from
X1+ ...+ X =0

we also have
CIARXT F ... F A X =0

and subtracting this equation from equation (5.8) we have
(A —A)Xi+ o1 (A—1 — Ap)Xp—1 = 0.

Thus, we have reduced the summation to one contaihirgl terms. Since all\; are distinct, the differences in
parentheses are all nonzero, and we can replacexedshx; = (A; — A\;)X;, which is still an eigenvector of.:

61X/1 +...+ ck,lxﬁﬂfl =0.
We can repeat this procedure until only one term remains, and this faree$, so that
CoXo + ...+ X =0

This entire argument can be repeated for the last equation, therefore foercing, and so forth.
In summary, the equationx; +. .. +cxXx = O implies thate; = ... = ¢, = 0, that is, that the vectors, . .., X
are linearly independent. A

For Hermitian matrices (and therefore for real symmetric matrices as well), the situation is even better.
Theorem 5.1.2 A Hermitian matrix has real eigenvalues.
Proof. A matrix A is Hermitian iff A = A¥. Let A andx be an eigenvalue od and a corresponding eigenvector:
AX = AX. (5.9)

By taking the Hermitian we obtain
xHAH = \*x |

SinceA = A", the last equation can be rewritten as follows:
xHA = x (5.10)
If we multiply equation (5.9) from the left by’ and equation (5.10) from the right lxy we obtain
xBAx = XxFx
xHAx = XxHx

which implies that
MxHx = \*xHx
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Sincex is an eigenvector, the scatef x is nonzero, so that we have
A=\

as promised. A

Corollary 5.1.3 A real and symmetric matrix has real eigenvalues.

Proof. A real and symmetric matrix is Hermitian. A

Theorem 5.1.4 Eigenvectors corresponding to distinct eigenvalues of a Hermitian matrix are mutually orthogonal.
Proof. Let A andu be two distinct eigenvalues of, and letx andy be corresponding eigenvectors:

AX = XX
Ay = py = yTA=py"

becaused = A¥ and from theorem 5.1.2 = i*. If we multiply these two equations lyy from the left andx from
the right, respectively, we obtain

yEAx = \yHx

yPAx = py"x,
which implies
AyHEx = pyHx
or
(A= pwyx=0.
Since the two eigenvalues are distinkt- 1 is nonzero, and we must hay& x = 0. A

Corollary 5.1.5 Ann x n Hermitian matrix withn distinct eigenvalues admitsorthonormal eigenvectors.

Proof. From theorem 5.1.4, the eigenvectors ofiar n Hermitian matrix withn, distinct eigenvalues are all mutu-
ally orthogonal. Since the eigenvalue equatibn= Ax is homogeneous iR, the vectox can be normalized without
violating the equation. Consequently, the eigenvectors can be made to be orthonormal. A

In summary, any square matrix withdistinct eigenvalues can be diagonalized by a similarity transformation, and
any square Hermitian matrix with distinct eigenvalues can be diagonalized by a unitary similarity transformation.

Notice that the converse is not true: a matrix can have coincident eigenvalues and stithadd@pendent, and
even orthonormal, eigenvectors. For instance,rthen identity matrix has: equal eigenvalues but orthonormal
eigenvectors (which can be chosen in infinitely many ways).

The examples in section 5.2 show that when some eigenvalues coincide, rather diverse situations can arise concern-
ing the eigenvectors. First, however, we point out a simple but fundamental fact about the eigenvalues of a triangular
matrix.

Theorem 5.1.6 The determinant of a triangular matrix is the product of the elements on its diagonal.
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Proof.  This follows immediately from the definition of determinant. Without loss of generality, we can assume a
triangular matrixB to be upper-triangular, for otherwise we can repeat the argument for the transpose, which because
of the properties above has the same eigenvalues. Then, the only possibly rignpétbe matrixB is b11, and the
summation in the definition of determinant given above reduces to a single term:

. b11 if Bislx 1
det(B) = { b1 det(By1) otherwise

By repeating the argument f@,, and so forth until we are left with a single scalar, we obtain

det(B) = b11 et bnn .

A
Corollary 5.1.7 The eigenvalues of a triangular matrix are the elements on its diagonal.
Proof. The eigenvalues of a matrix are the solutions of the equation
det(A—XI)=0.
If Ais triangular, soisB = A — AI, and from the previous theorem we obtain
det(A— X)) = (a11 = A) ... - (@pn — A)
which is equal to zero for
A=Q11,. ., Qnp -
A

Note that diagonal matrices are triangular, so this result holds for diagonal matrices as well.

5.2 Good and Bad Matrices

Solving differential equations becomes much easier when matrices have a full set of orthonormal eigenvectors. For
instance, the matrix

2 0
A:[O 1} (5.11)

has eigenvaluezand1 and eigenvectors

S BRSO

Matrices withn orthonormal eigenvectors are calledrmal Normal matrices are good news, because then the
n x n system of differential equations
X = AX

has solution

e)\lt

n
x(t) = Zc,»si it =8 c
=1

6>‘"t
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whereS = [s; - - - s,] are the eigenvectors, are the eigenvalues, and the veat@f constants; is
c = S7x(0) .

More compactly,

x(t) = S SHEx(0) .

eAnt

Fortunately these matrices occur frequently in practice. However, not all matrices are as good as these. First, there
may still be a complete set af eigenvectors, but they may not be orthonormal. An example of such a matrix is

o]

which has eigenvaluesand1 and nonorthogonal eigenvectors

o-[i] -2[}]

This is conceptually only a slight problem, because the unitary métig&xreplaced by an invertible matr, and the
solution becomes

x(t) = Q Q'x(0).

eAnt

Computationally this is more expensive, because a computation of a Hermitian is replaced by a matrix inversion.

However, things can be worse yet, and a full set of eigenvectors may fail to exist, as we now show.

A necessary condition for anx n matrix to bedefectivethat is, to have fewer thameigenvectors, is that it have
repeated eigenvalues. In fact, we have seen (theorem 5.1.1) that a matrix with distinct eigenvalues (zero or nonzero
does not matter) has a full set of eigenvectors (perhaps nonorthogonal, but independent). The simplest example of a
defective matrix is

0 1
o)

which has double eigenval@eand only eigenvectdi 0], while

3 1
0 3
has double eigenvaluiand only eigenvectdil 0]7, so zero eigenvalues are not the problem.
However, repeated eigenvalues are not a sufficient condition for defectiveness, as the identity matrix proves.

How bad can a matrix be? Here is a matrix that is singular, has fewemtle#égenvectors, and the eigenvectors it
has are not orthogonal. It belongs to the scum of all matrices:

0 2 -1
A=1]10 2 1
0 0 2

Its eigenvalues are, because the matrix is singular, ahdepeated twiced has to have a repeated eigenvalue if it is
to be defective. Its two eigenvectors are

1 ﬁ 1
=101, 4 = - 1
0 0

corresponding to eigenvaluésand2 in this order, and there is ng,. Furthermoreq, andq, are not orthogonal to
each other.
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5.3 Computing Eigenvalues and Eigenvectors Numerically

The examples above have shown that not every n matrix admitsn independent eigenvectors, so some matrices
cannot be diagonalized by similarity transformations. Fortunately, these matrices t@nfgelarizedby similarity
transformations, as we now show. We will show later on that this allows solving systems of linear differential equations
regardless of the structure of the system’s matrix of coefficients.

It is important to notice that if a matrid is triangularized by similarity transformations,

T=Q'AQ,

then the eigenvalues of the triangular maffixare equal to those of the original matrix In fact, if

AX = XX,
then
QTQ 'x = \x,
that is,
Ty = \y
where
y=Q 'x,

so\ is also an eigenvalue far. The eigenvectors, however, are changed according to the last equation.
The Schur decomposition does even better, since it triangularizes any square Anbtria unitary (possibly
complex) transformation:
T=SHAS .

This transformation is equivalent to factoridginto the product
A= STS"

and this product is called ti&chur decompositioof A. Numerically stable and efficient algorithms exist for the Schur
decomposition. In this note, we will not study these algorithms, but only show that all square matrices admit a Schur
decomposition.

5.3.1 Rotations into thexr; Axis

An important preliminary fact concerns vector rotations. Eegtbe the first column of the identity matrix. It is
intuitively obvious that any nonzero real vectorcan be rotated into a vector parallel ¢p. Formally, take any
orthogonal matrixS whose first column is

S X
1= o -
[
Sinces! x = xTx/||x|| = ||x||, and since all the othes; are orthogonal ts;, we have
X
« x id
STx=1| : |x=| : |=
st sI'x 0

which is parallel toe; as desired. It may be less obvious thabaplexvectorx can be transformed intoraal vector
parallel toe; by a unitary transformation. But the trick is the same: let

X

S| = — .
X
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Now's; may be complex. We hawa’x = x#x/||x|| = ||x||, and
Stix=1 1 |x=| : |=| . ,
st sHx 0

just about like before. We are now ready to triangularize an arbitrary square matrix

5.3.2 The Schur Decomposition

The Schur decomposition theorem is the cornerstone of eigenvalue computations. It states that any square matrix can
be triangularized by unitary transformations. The diagonal elements of a triangular matrix are its eigenvalues, and
unitary transformations preserve eigenvalues. Consequently, if the Schur decomposition of a matrix can be computed,
its eigenvalues can be determined. Moreover, as we will see later, a system of linear differential equations can be
solved regardless of the structure of the matrix of its coefficients.

Lemma 5.3.1 If Aisann x n matrix and\ andx are an eigenvalue ofl and its corresponding eigenvector,

AX = AX (5.12)
then there is a transformation
T=U"AU
whereU is a unitary,n x n matrix, such that
A
0
T = .| C
0

Proof. Let U be a unitary transformation that transforms the (possibly complex) eigenvectod into a real
vector on ther; axis:

0
x=U| .
0
wherer is the nonzero norm of. By substituting this into (5.12) and rearranging we have
[ r ] r
0 0
AU = U
| 0 | 0
[ r ] [ r
0 0
UPAU | . = A .
- 0 - (- O -
- -
0 0
UAU | . = A .
L 0 - - 0 -
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1 A

0 0
T =

0 0

The last left-hand side is the first columnBf and the corresponding right-hand side is of the form required by the
lemma. A

Theorem 5.3.2 (Schur)If A is anyn x n matrix then there exists a unitary x n matrix S such that
SHAS =T

whereT is triangular. Furthermore,S can be chosen so that the eigenvalue®f A appear in any order along the
diagonal ofT.

Proof. By induction. The theorem obviously holds fer= 1:
1A1=A.

Suppose it holds for all matrices of order 1. Then from the lemma there exists a unitéhgsuch that

A

UM AU = 0 C

0
where) is any eigenvalue aofl. PartitionC' into a row vector and afn — 1) x (n — 1) matrix G:
wit }

C= G

By the inductive hypothesis, there is a unitary maWrisuch that’ GV is a Schur decomposition 6f. Let

Clearly,S is a unitary matrix, and AS is upper-triangular. Since the elements on the diagonal of a triangular matrix
are the eigenvalues;”” AS is the Schur decomposition of. Because we can pick any eigenvalue\aghe order of
eigenvalues can be chosen arbitrarily. A

This theorem does not say how to compute the Schur decomposition, only that it exists. Fortunately, there is a
stable and efficient algorithm to compute the Schur decomposition. This is the preferred way to compute eigenvalues
numerically.
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5.4 Eigenvalues/Vectors and Singular Values/Vectors

In this section we prove a few additional important properties of eigenvalues and eigenvectors. In the process, we also
establish a link between singular values/vectors and eigenvalues/vectors. While this link is very important, it is useful
to remember that eigenvalues/vectors and singular values/vectors are conceptually and factually very distinct entities
(recall figure 5.1).

First, a general relation between determinant and eigenvalues.

Theorem 5.4.1 The determinant of a matrix is equal to the product of its eigenvalues.

Proof. The proof is very simple, given the Schur decomposition. In fact, we know that the eigenvalues of a matrix
A are equal to those of the triangular matrix in the Schur decompositigh &urthermore, we know from theorem

5.1.6 that the determinant of a triangular matrix is the product of the elements on its diagonal. If we recall that a
unitary matrix has determinant 1 or -1, that the determinangarfid S are the same, and that the determinant of a
product of matrices is equal to the product of the determinants, the proof is complete. A

We saw that am x n Hermitian matrix withn distinct eigenvalues admitsorthonormal eigenvectors (corollary
5.1.5). The assumption of distinct eigenvalues made the proof simple, but is otherwise unnecessary. In fact, now that
we have the Schur decomposition, we can state the following stronger result.

Theorem 5.4.2 (Spectral theorem)Every Hermitian matrix can be diagonalized by a unitary matrix, and every real
symmetric matrix can be diagonalized by an orthogonal matrix:

A=A" = A=5As"
Areal,A=AT = A=SAST Sreal.

In either caseA is real and diagonal.

Proof.  We already know that Hermitian matrices (and therefore real and symmetric ones) have real eigenvalues
(theorem 5.1.2), sd is real. Let now
A=STSH

be the Schur decomposition df SinceA is Hermitian, so igl". In fact,7 = S# AS, and
TH = (SHASY = SHAHG = SHAS =T .

But the only way thafl” can be both triangular and Hermitian is for it to be diagonal, becatise 0. Thus, the
Schur decomposition of a Hermitian matrix is in fact a diagonalization, and this is the first equation of the theorem
(the diagonal of a Hermitian matrix must be real).

Let now A be real and symmetric. All that is left to prove is that then its eigenvectors are real. But eigenvectors are
the solution of the homogeneous system (5.6), which is both real and rank-deficient, and therefore admits nontrivial
real solutions. Thusg is real, andS” = S7', A

In other words, a Hermitian matrix, real or not, with distinct eigenvalues or not, has real eigenvalue®iand
thonormal eigenvectors. If in addition the matrix is real, so are its eigenvectors.

We recall that a real matrid such that for every nonzesowe havex” Ax > 0 is said to bepositive definitelt is
positive semidefinité for every nonzerox we havex? Ax > 0. Notice that a positive definite matrix is also positive
semidefinite. Positive definite or semidefinite matrices arise in the solution of overconstrained linear systems, because
AT A is positive semidefinite for everyl (lemma 5.4.5). They also occur in geometry through the equation of an
ellipsoid,

xTQx =1
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in which @ is positive definite. In physics, positive definite matrices are associated to quadraticxfoémsthat
represent energies or second-order moments of mass or force distributions. Their physical meaning makes them
positive definite, or at least positive semidefinite (for instance, energies cannot be negative). The following result
relates eigenvalues/vectors with singular values/vectors for positive semidefinite matrices.

Theorem 5.4.3 The eigenvalues of a real, symmetric, positive semidefinite mataire equal to its singular values.
The eigenvectors oA are also its singular vectors, both left and right.

Proof.  From the previous theorem = SAST, where bothA and S are real. Furthermore, the entriesAnare
nonnegative. In fact, from
As; = As;

we obtain
siAsi = s As; = Asls; = Asi||* = A

If Ais positive semidefinite, thex!’ Ax > 0 for any nonzerc, and in particulas! As; > 0, so that\ > 0.
But
A= SAST

with nonnegative diagonal entries i is the singular value decompositioh = UXV7T of A with ¥ = A and
U =V = S. Recall that the eigenvalues in the Schur decomposition can be arranged in any desired order along the
diagonal. A

Theorem 5.4.4 A real, symmetric matrix is positive semidefinite iff all its eigenvalues are nonnegative. It is positive
definite iff all its eigenvalues are positive.

Proof. Theorem 5.4.3 implies one of the two directionsAlis real, symmetric, and positive semidefinite, then its
eigenvalues are nonnegative. If the proof of that theorem is repeated with the strict inequality, we also obtaih that if
is real, symmetric, and positive definite, then its eigenvalues are positive.

Conversely, we show that if all eigenvalue®f a real and symmetric matri® are positive (nonnegative) theh
is positive definite (semidefinite). To this end, ¥gbe any nonzero vector. Since real and symmetric matrices/have
orthonormal eigenvectors (theorem 5.4.2), we can use these eigengctorss, as an orthonormal basis f&”,
and write

X=c1S + ... +¢cySy

with

¢ =x's; .

But then
xTAx = XTA(0151 + ...+ cnSy) = XT(01A51 + ...+ cas,)

= XT(Cl)\lsl + ...+ CnAnSn) = cl)\leSl + ...+ Cn)\nXTSn
= M+ .+ A2 >0(0r >0)

because the, are positive (nonnegative) and not alican be zero. Since” Ax > 0 (or > 0) for every nonzercx, A
is positive definite (semidefinite). A

Theorem 5.4.3 establishes one connection between eigenvalues/vectors and singular values/vectors: for symmetric,
positive definite matrices, the concepts coincide. This result can be used to introduce a less direct link, but for arbitrary
matrices.

Lemma 5.4.5 AT A is positive semidefinite.
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Proof.  For any nonzera we can writex” AT Ax = || Ax||? > 0. A

Theorem 5.4.6 The eigenvalues oA A with m > n are the squares of the singular valuesifthe eigenvectors of
AT A are the right singular vectors of. Similarly, form < n, the eigenvalues 0of A” are the squares of the singular
values of4, and the eigenvectors efA” are the left singular vectors of.

Proof. If m > nandA =UZVT isthe SVD of4, we have
ATA=vxUuTusv? = vx2y?

which is in the required format to be a (diagonal) Schur decompositionSvithV andT = A = 2. Similarly, for
m <n,

AAT =usvTvyuT = usru”
is @ Schur decomposition withi = U andT = A = X2, A

We have seen that important classes of matrices admit a full set of orthonormal eigenvectors. The theorem below
characterizes the classalf matrices with this property, that is, the class of all normal matrices. To prove the theorem,
we first need a lemma.

Lemma 5.4.7 If for an n x n matrix B we haveBBY = BH B, then for every = 1,...,n, the norm of theg-th row
of B equals the norm of itsth column.

Proof. FromBBHY = BY B we deduce
|Bx||?> = x¥ B Bx = x# BB x = | BYx|* . (5.13)

If x = e;, thei-th column of then x n identity matrix, Be; is thei-th column of B, and B g; is thei-th column of
BH which is the conjugate of thieth row of B. Since conjugation does not change the norm of a vector, the equality
(5.13) implies that the-th column of B has the same norm as th¢h row of B. A

Theorem 5.4.8 Ann x n matrix is normal if an only if it commutes with its Hermitian:

AAT = AP A

Proof. LetA = STSH be the Schur decomposition df Then,
AA" = STSHSTHSH = STTHSH and A" A =STHSHSTSH = STHTSH |

BecauseS is invertible (even unitary), we hawA” = A Aifandonly if TTH = THT.

However, a triangular matri¥’ for which 77T = THT must be diagonal. In fact, from the lemma, the norm of
thei-th row of T is equal to the norm of it&th column. Let; = 1. Then, the first column df has norm¢;;|. The
first row has first entry; 1, so the only way that its norm can big, | is for all other entries in the first row to be zero.
We now proceed through= 2, ..., n, and reason similarly to conclude tHaimust be diagonal.

The converse is also obviously trueTifis diagonal, the'TH? = THT. Thus,AA” = A¥ Aif and only if T is
diagonal, that is, if and only ifi can be diagonalized by a unitary similarity transformation. This is the definition of a
normal matrix. A
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Corollary 5.4.9 A triangular, normal matrix must be diagonal.

Proof. We proved this in the proof of theorem 5.4.8. A

Checking thatA” A = AAf is much easier than computing eigenvectors, so theorem 5.4.8 is a very useful
characterization of normal matrices. Notice that Hermitian (and therefore also real symmetric) matrices commute
trivially with their Hermitians, but so do, for instance, unitary (and therefore also real orthogonal) matrices:

vt = =1.

Thus, Hermitian, real symmetric, unitary, and orthogonal matrices are all normal.
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Chapter 6

Ordinary Differential Systems

In this chapter we use the theory developed in chapter 5 in order to solve systems of first-order linear differential
equations with constant coefficients. These systems have the following form:

X = Ax+b(t) (6.1)
X(0) = Xg (6.2)

wherex = x(t) is ann-dimensional vector function of timg the dot denotes differentiation, the coefficieatsin
then x n matrix A are constant, and the vector functioft) is a function of time. The equation (6.2), in whighis
a known vector, defines theitial value of the solution.

First, we show thascalar differential equations of order greater than one can be reducggtemsf first-order
differential equations. Then, in section 6.2, we recall a general result for the solution of first-order differential systems
from the elementary theory of differential equations. In section 6.3, we make this result more specific by showing
that the solution to a homogeneous system is a linear combination of exponentials multiplied by polynomials in
This result is based on the Schur decomposition introduced in chapter 5, which is numerically preferable to the more
commonly used Jordan canonical form. Finally, in sections 6.4 and 6.5, we set up and solve a particular differential
system as an illustrative example.

6.1 Scalar Differential Equations of Order Higher than One
The first-order system (6.1) subsumes also the case of a scalar differential equation of padsibly greater than 1,

d"y dn—ly
dtn +Cp—1

d

In fact, such an equation can be reduced to a first-order system of the form (6.1) by introducindithensional
vector

Yy
x1 dy
dt
X = = .
In dnily
=1
With this definition, we have
di
dlg = Tj41 fori=0,....n—1
'y do
dtn dt ’

69
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andx satisfies the additional — 1 equations

dl‘i
e A4
Ti+1 dt (6 )
fori = 1,...,n — 1. If we write the original system (6.3) together with the- 1 differential equations (6.4), we
obtain the first-order system
X = AX+ b(t)
where
0 1 0 0
0 0 1 0
A= :
0 0 0 1
—C —C —C2 —Cp—1
is the so-calledompanion matrif (6.3) and
0
0
b(t) =]
0
b(t)

6.2 General Solution of a Linear Differential System

We know from the general theory of differential equations that a general solution of system (6.1) with initial condition
(6.2) is given by
X(t) = Xn(t) + Xp(t)

wherex;, (t) is the solution of the homogeneous system
X = AX
x(0) = X
andx,(t) is a particular solution of
X = Ax+b(t)
x(0) = 0.

The two solution componenks, andx, can be written by means of theatrix exponentialintroduced in the following.
For the scalar exponential* we can write a Taylor series expansion

A A2 Nt

At _
TR TR *Z 1]
Jj=0 J

Usually, in calculus classes, the exponential is introduced by other means, and the Taylor series expansion above is
proven as a property.
For matrices, the exponentiaf of a matrixZ ¢ R™*™ is insteaddefinedby the infinite series expansion

A >
zZ _ e — -
ef=I+ 5ot —ng~
j=0

INot always. In some treatments, the exponentideiinedthrough its Taylor series.
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Herel is then x n identity matrix, and the general terif¥ /! is simply the matrixZ raised to thejth power divided
by the scalay!. It turns out that this infinite sum converges (torar n matrix which we write ag#) for every matrix
Z. SubstitutingZ = At gives

At =1 ‘ff+1422f2+f§f3+---=2’4;”. (6.5)
§=0
Differentiating both sides of (6.5) gives
det ~As A%t N A2
dt 1! 2!
= A(I+f+‘4§f2 +>
df;t = Aett.
Thus, for any vectow, the functionx;, (t) = e4*w satisfies the homogeneous differential system
Xy, = AXy, .
By using the initial values (6.2) we obtaim= x,, and
X (t) = e'x(0) (6.6)

is a solution to the differential system (6.1) wihli) = 0 and initial values (6.2). It can be shown that this solution is
unique.

From the elementary theory of differential equations, we also know that a particular solution to the nonhomoge-
neous B(t) # 0) equation (6.1) is given by

t
X, (t) = / A=) () ds
0
This is easily verified, since by differentiating this expressiorxfpwe obtain
t
X, = Aet / e~ 4b(s) ds + e e A b(t) = Ax, + b(t) ,
0

SoXx, satisfies equation (6.1).
In summary, we have the following result.

The solution to
X = AX+ b(¢) (6.7)
with initial value
x(0) = Xo (6.8)
is
X(t) = Xn(t) + Xp(t) (6.9)
where
X (t) = e*x(0) (6.10)
and .
X, (t) = / et b(s)ds . (6.11)
0
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Since we now have a formula for the general solution to a linear differential system, we seem to have all we need.
However, we do not know how to compute the matrix exponential. The naive solution to use the definition (6.5)
requires too many terms for a good approximation. As we have done for the SVD and the Schur decomposition, we
will only point out that several methods exist for computing a matrix exponential, but we will not discuss how this is
doné€. In a fundamental paper on the subjedineteen dubious ways to compute the exponential of a n{&x
Review, vol. 20, no. 4, pp. 801-36), Cleve Moler and Charles Van Loan discuss a large number of different methods,
pointing out that no one of them is appropriate for all situations. A full discussion of this matter is beyond the scope
of these notes.

When the matrixA4 is constant, as we currently assume, we can be much more specific about the structure of the
solution (6.9) of system (6.7), and particularly so about the solwtign) to the homogeneous part. Specifically, the
matrix exponential (6.10) can be written as a linear combination, with constant vector coefficients, of scalar expo-
nentials multiplied by polynomials. In the general theory of linear differential systems, this is shown via the Jordan
canonical form. However, in the paper cited above, Moler and Van Loan point out that the Jordan form cannot be
computed reliably, and small perturbations in the data can change the results dramatically. Fortunately, a similar result
can be found through the Schur decomposition introduced in chapter 5. The next section shows how to do this.

6.3 Structure of the Solution
For the homogeneous casg) = 0, consider the first order system of linear differential equations

X = Ax (6.12)
x(0) = Xo. (6.13)

Two cases arise: either admitsn distinct eigenvalues, or is does not. In chapter 5, we have seen that if (but not only
if) A hasn distinct eigenvalues then it haslinearly independent eigenvectors (theorem 5.1.1), and we have shown
how to findx,, (t) by solving an eigenvalue problem. In section 6.3.1, we briefly review this solution. Then, in section
6.3.2, we show how to compute the homogeneous solutidt) in the extreme case of an x n matrix A with n
coincidenteigenvalues.

To be sure, we have seen that matrices with coincident eigenvalues can still have a full set of linearly independent
eigenvectors (see for instance the identity matrix). However, the solution procedure we introduce in section 6.3.2 for
the case of: coincident eigenvalues can be applied regardless to how many linearly independent eigenvectors exist.
If the matrix has a full complement of eigenvectors, the solution obtained in section 6.3.2 is the same as would be
obtained with the method of section 6.3.1.

Once these two extreme cases (nondefective matrix or all-coincident eigenvalues) have been handled, we show a
general procedure in section 6.3.3 for solving a homogeneous or nonhomogeneous differential system for any, square,
constant matrix4, defective or not. This procedure is based on backsubstitution, and produces a result analogous
to that obtained via Jordan decomposition for the homogeneous<pi@it of the solution. However, since it is
based on the numerically sound Schur decomposition, the method of section 6.3.3 is superior in practice. For a
nonhomogeneous system, the procedure can be carried out analytically if the functions in the right-hand side vector
b(t) can be integrated.

6.3.1 A is Not Defective

In chapter 5 we saw how to find the homogeneous paft) of the solution whend has a full set ofn linearly
independent eigenvectors. This result is briefly reviewed in this section for conveRience.

If A is not defective, then it has linearly independent eigenvectays, . . ., g,, with corresponding eigenvalues
A,y An. Let

Q:[ql qn]'

2|n Matlab,expm(A) is the matrix exponential 4.
3Parts of this subsection and of the following one are based on notes written by Scott Cohen.
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This square matrix is invertible because its columns are linearly independent.A&jpee \;q,, we have

AQ = QA, (6.14)
whereA = diag(\1, - . ., A,) is a square diagonal matrix with the eigenvalueslain its diagonal. Multiplying both
sides of (6.14) by ! on the right, we obtain

A=QAQ L (6.15)

Then, system (6.12) can be rewritten as follows:

= AXx

= QAQ 'x

AQ™x

= Ay, (6.16)

Q—l

< X X X%
Il

wherey = Q~'x. The last equation (6.16) representsincoupled, homogeneous, differential equatigns= \;y;.
The solution is

v (t) = e™y(0),
where
M =diageM?, ... eMnt).

Using the relationx = Qy, and the consequent relatigf0) = Q~1x(0), we see that the solution to the homogeneous
system (6.12) is
xn(t) = QeMQ™'x(0).

If Ais normal, that is, if it has orthonormal eigenvectorg, . . . ¢,, then@ is replaced by the Hermitian matrix
S=[s -+ s, ], Q 'isreplaced bys¥, and the solution to (6.12) becomes

Xn(t) = SerSHx(0).

6.3.2 A Hasn Coincident Eigenvalues

WhenA = QAQ !, we derived that the solution to (6.12)%g(t) = Qe Q~1x(0). Comparing with (6.6), it should
be the case that
eQ(At)Q_1 — QeAthl'

This follows easily from the definition of? and the fact thaQ(At)Q 1)’ = Q(At)’Q 1. Similarly, if A = SASH,
wheresS is Hermitian, then the solution to (6.12)xg(t) = Se’SHx(0), and

eS(At)SH — SeltgH.

How can we compute the matrix exponential in the extreme case in whiwdsn coincident eigenvalues, regard-
less of the number of its linearly independent eigenvectors? In any Aasmits a Schur decomposition

A=STSH

(theorem 5.3.2). We recall thatis a unitary matrix and is upper triangular with the eigenvalues4bn its diagonal.
Thus we can writd” as
T=A+N,

whereA is diagonal andV is strictly upper triangular. The solution (6.6) in this case becomes

xn (1) = ST x(0) = STt SHx(0) = SeMTNtgHY(0).
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Thus we can compute (6.6) if we can compuaté = ¢Vt This turns out to be almost as easy as computiHg
when the diagonal matriX is a multiple of the identity matrix:

A=)T
that is, when all the eigenvalues dfcoincide. In fact, in this casé,t and Nt commute:
AMNt=AXIt Nt = M Nt =Nt Xt = Nt It = Nt At .
It can be shown that if two matricés, andZ, commute, that is if
AVAESRAVAR

then
eZ1t 22 — 2122 — 22,71

Thus, in our case, we can write
eAtJrNt — 6At6Nt

We already know how to computé', so it remains to show how to comput&*. The fact thatVt is strictly upper
triangular makes the computation of this matrix exponential much simpler than for a general Zhatrix

Suppose, for example, that is 4 x 4. ThenN has three nonzero superdiagon&€, has two nonzero superdiag-
onals,N? has one nonzero superdiagonal, antlis the zero matrix:

— N? =

O % ¥ ¥

N3 _ —>N4:

T
SO OO OO oo
L
r
SO0 OO oo
SO OO OO oo

OO OO OO O ¥
O ODO O OO % ¥
OO OO OO O ¥
D ODO O OO % ¥

O O O *

In general, for a strictly upper triangularx n matrix, we haveN? = 0 for all j > n (i.e., N is nilpotent of order).
Therefore,

oS} i n—1 i
NIt NIt
Nt _ _
€= Z g Z 4!
=0 =0

is simply a finite sum, and the exponential reduces to a matrix polynomial.
In summary, the general solution to the homogeneous differential system (6.12) with initial value (6.13) when the
n x n matrix A hasn coincident eigenvalues is given by

n—1

Xp(t) = SeM Y

=0

NIitd
%SHXO (6.17)
!

where
A=S(A+N)SH

is the Schur decomposition df,
A=XI

is a multiple of the identity matrix containing the coincident eigenvalue4 of its diagonal, andV is strictly upper
triangular.
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6.3.3 The General Case

We are now ready to solve the linear differential system
X = Ax+b(t) (6.18)

in the general case of a constant matfixdefective or not, with arbitrari(¢). In fact, letA = ST'S* be the Schur
decomposition o4, and consider the transformed system

y(t) = Ty(t) + c(t) (6.20)
where
y(t) = SHx(t) and c(t) = Sb(t). (6.21)
The triangular matrix” can always be written in the following form:
Ty - o Tk
0 Top -+ T
T= . ) .
0 - 0 T
where the diagonal blocks; fori = 1,. .., k are of sizen; xn; (possiblyl x 1) and contain all-coincident eigenvalues.
The remaining nonzero blocks; with i < j can be in turn bundled into matrices
R_[ i,94+1 "7 Ti,k]

that contain everything to the right of the correspondiihg The vectorc(t) can be partitioned correspondingly as
follows

ci(t)
c(t) = :
L Ck(t) |
wherec; hasn; entries, and the same can be done for
[ yi(t) ]
y(t) = :
BAGHE
and for the initial values
y1(0)
y(0) = :
Y (0)

The triangular system (6.20) can then be solved by backsubstitution as follows:

for i = k down tol

ifi <k

di(t) = Ri[y; 41 (1), YR
else

d;(t) = 0 (ann,-dimensional vector of zeros)
end

T =M1+ N; (diagonal and strictly upper-triangular partﬁt)
Yilt) = NS Bl (0) 4 fy (M09 3t MUY (e(s) + dli(s)) ds

end.
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In this procedure, the expression §g(t) is a direct application of equations (6.9), (6.10), (6.11), and (6.17) with
S = I. Inthe general case, the applicability of this routine depends on whether the integral in the expressioh for
can be computed analytically. This is certainly the case vid{enis a constant vectds, because then the integrand is
a linear combination of exponentials multiplied by polynomials s, which can be integrated by parts.

The solutionx(t) for the original system (6.18) is then

X(t) = Sy(t) .
As an illustration, we consider a very small example,2he2 homogeneous, triangular case,
(1 tin ti2 Y1
= . 6.22
[ Y2 } [ 0 ta2 } [ Y2 ] 6.22)

Whent;; = teg = A, we obtain
1 tiot

It
v =)o v,
In scalar form, this becomes

vi(t) = (y1(0) + t12ya(0) 1)
ya(t) = 12(0)eM,
and it is easy to verify that this solution satisfies the differential system (6.22).
Whent;; = A\ # tas = Ao, We could solve the system by finding the eigenvectofB,&ince we know that in this

case two linearly independent eigenvectors exist (theorem 5.1.1). Instead, we apply the backsubstitution procedure
introduced in this section. The second equation of the system,

Y2(t) = ta2y
has solution
ya(t) = y2(0) " .
We then have
d(t) = traya(t) = t12y2(0) €'
and

t
y(t) = yl(O)e)‘ltJr/ M=) d, (s) ds

— y1<0)€)\1t+t12y2 )\1t —)\15‘ )\2§ dS

Alt/ )\27}\1)5 ds
e

= y1(0)eM! + t19y2(0

= (o)t 22 ey
t12y2(

A2 — M\

(0)
t1292(0 )
) (0

_ yl(o)e)\lt 4 222 ot e)\lt)

Exercise: verify that this solution satisfies both the differential equation (6.22) and the initial value equétjos y,,.
Thus, the solutions to system (6.22) fer = to5 and fort,; # too have different forms. Whilg () is the same
in both cases, we have

Y1 (t) =111 (0) €>\t + t12y2(0) te’\t if tll = t22

t12y2(0 .
y1(t) = y1(0)eM* + 7)\12”_2(/\1) (eMt —eMt) if tyg FEton
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rest position
of mass 2

Figure 6.1: A system of masses and springs. In the absence of external forces, the two masses would assume the
positions indicated by the dashed lines.

This would seem to present numerical difficulties whien ~ t,,, because the solution would suddenly switch
from one form to the other as the difference betwggrandt,, changes from about zero to exactly zero or viceversa.
This, however, is not a problem. In fact,

At e)qt

9]

lim ———— =teM,
A1 —A )\—)\1

and the transition between the two cases is smooth.

6.4 A Concrete Example

In this section we set up and solve a more concrete example of a system of differential equations. The initial system
has two second-order equations, and is transformed into a first-order system with four equatiehs. fimatrix of
the resulting system has an interesting structure, which allows finding eigenvalues and eigenvectors analytically with a
little trick. The point of this section is to show how to transform the complex formal solution of the differential system,
computed with any of the methods described above, into a real solution in a form appropriate to the problem at hand.

Consider the mechanical system in figure 6.1. Suppose that we want to study the evolution of the system over time.
Since forces are proportional to accelerations, because of Newton’s law, and since accelerations are second derivatives
of position, the new equations are differential. Because differentiation occurs only with respect to one variable, time,
these arerdinary differential equations, as opposed to partial.

In the following we write the differential equations that describe this system. Two linear differential equations of
the second ordéresult. We will then transform these into four linear differential equations of the first order.

By Hooke’s law, the three springs exert forces that are proportional to the springs’ elongations:

f1 = Qv

fa = c(va—1)

4Recall that the order of a differential equation is the highest degree of derivative that appears in it.
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fs = —c3vy

where thez; are the positive spring constants (in newtons per meter).
The accelerations of masses 1 and 2 (springs are assumed to be massless) are proportional to their accelerations,
according to Newton’s second law:

mity = —fi+ fo=—civ1 +ca(va —v1) = —(c1 + c2)v1 + cava
Moty = —f2 + f3 = —62(112 - U1) — C3V2 = C2V1 — (02 + 63)1)2
or, in matrix form,
V = Bv (6.23)

where

o __citco C2
v:{vz} and B:{ -

ma mo

We also assume that initial conditions
v(0) and v(0) (6.24)

are given, which specify positions and velocities of the two masses at @

To solve the second-order system (6.23), we will first transform it to a system of four first-order equations. As
shown in the introduction to this chapter, the trick is to introduce variables to denote the first-order derivatj\as of
that second-order derivatives wfare first-order derivatives of the new variables. For uniformity, we define four new
variables

Ui U1
U v
u=| 2| =12 (6.25)
us U1
Uy U2

so that

uz = 01 and w4y = 09 s

w]-en]

We can now gather these four first-order differential equations into a single system as follows:

while the original system (6.23) becomes

U= Au (6.26)
where
0 0 1 0
A 0 0 0 1
B 0 0
0 0

Likewise, the initial conditions (6.24) are replaced by the (known) vector

wo-[18]

In the next section we solve equation (6.26).
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6.5 Solution of the Example
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Not all matrices have a full set of linearly independent eigenvectors. With the system of springs in figure 6.1, however,
we are lucky. The eigenvalues dfare solutions to the equation

AX = XX,

where we recall that

0 I
B 0

|

Here, the zeros il are2 x 2 matrices of zeros, antlis the2
upper and lower halvesandz,

} and B =

(6.27)

[ _citce
miy
Cc2
mao

Cc2

_crtes

ma

|

x 2 identity matrix. If we partition the vector into its

x = [ an
Z J
we can write
10 I y| | z
sl ] [2] =[]
so that the eigenvalue equation (6.27) can be written as the following pair of equations:
zZ = )y (6.28)
By = Xz,
which yields
By=qpuy with p=2M\2.

In other words, the eigenvalues dfare the square roots of
B asp, andus, then the eigenvalues of are

the eigenvalue®oif we denote the two eigenvalues of

A= vV H1 A2 = —VH1 Az = V 12 Ay = —VH2 .
The eigenvalues; andyu. of B are the solutions of
2
det(B — ul) = (M M) <02+Ca M) B R TP S
mi mo mimes
where
a1<01+62 CQ+03> and 6:0162+0103+CQCB
2 mi mo mi1mso

are positive constants that depend on the elastic properties of the springs and on the masses. We then obtain

H12=-—-ax7,

where

2
€3

1
A/:‘/az—,@:\/ <01+02_
4 mq

2
Co + C3 n
mo mimeso '

The constany is real because the radicand is nonnegative. We also have that, so that the two solutions, , are

real and negative, and the four eigenvalues pof

M= Veaty, a=—-V-a+7, (6.29)
As = Voa—7, M=—V—a—~ (6.30)
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come in nonreal, complex-conjugate pairs. This is to be expected, since our system of springs obviously exhibits an
oscillatory behavior.

Also the eigenvectors ofl can be derived from those @&. In fact, from equation (6.28) we see thatyifs an
eigenvector ofB corresponding to eigenvalye = \?, then there are two corresponding eigenvectorsAaf the

form
_ y
X = [ Dy } . (6.31)
The eigenvectors aB are the solutions of
(B=(—axt+y)I)y=0. (6.32)

Since+(—« =+ ) are eigenvalues dB, the determinant of this equation is zero, and the two scalar equations in (6.32)
must be linearly dependent. The first equation reads

c1+c¢ c
—(lz—aﬂ17>y1+2y2=0
ma mi

and is obviously satisfied by any vector of the form

€2
— mi
yk|: (:1"-1-102 —Oéi’y :|
wherek is an arbitrary constant. Fdr# 0, y denotes the two eigenvectors Bf and from equation (6.31) the four
eigenvectors ofd are proportional to the four columns of the following matrix:

C2 C2 C2 C2

mi mi mi mi

a+ X a+ A3 a+ \2 a+ \2
Q= o Py o o (6.33)

A2 A2 A3 A2

M(a+22) X(a+A3) As(a+A3) A(a+A3)
where
1+
===

The general solution to the first-order differential system (6.26) is then given by equation (6.17). Since we just found
four distinct eigenvectors, however, we can write more simply

u(t) = QeMQ1u(0) (6.34)
where
A O 0 0
10 X 0 0
A=119 A3 0
0 0 0 M\

In these expressions, the values\gfare given in equations (6.30), agdis in equation (6.33).

Finally, the solution to the original, second-order system (6.23) can be obtained from equation (6.25) by noticing
thatv is equal to the first two componentsof

This completes the solution of our system of differential equations. However, it may be useful to add some
algebraic manipulation in order to show that the solution is indeed oscillatory. As we see in the following, the masses’
motions can be described by the superposition of two sinusoids whose frequencies depend on the physical constants
involved (masses and spring constants). The amplitudes and phases of the sinusoids, on the other hand, depend on the
initial conditions.

To simplify our manipulation, we note that

u(t) = QeMw ,
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where we defined
w=Q u(0). (6.35)

We now leave the constants ¥ unspecified, and derive the general solutign) for the original, second-order
problem. Numerical values for the constants can be found from the initial conditi@ndy equation (6.35). We
have

v(t) = Q(1:2,:)eMw,

whereQ(1 : 2,:) denotes the first two rows @j. Since
Ao = — A1 and A = —>\3

(see equations (6.30)), we have
Ql:2:)=[a a q G|
where we defined

Thus, we can write
v(t) =q, (kle’\lt + kge_/\lt) +0, (k’3€)\3t + k4e_)‘3t) .
Since the\s are imaginary but(t) is real, thek; must come in complex-conjugate pairs:
ki =k and ks=k;. (6.36)

In fact, we have
V(0) = qy (k1 + k2) + Gy (ks + ka)

and from the derivative
V(t) = a1 (k1e™t — koe M) 4+ gy)s (kse' — kye3")

we obtain
V(O) = qlAl(kl — k2) -+ q2)\3(k3 - k4) .
Since the vectorg; are independent (assuming that the mads nonzero), this means that
k1 + ko isreal k1 — ko is purely imaginary
ks + kyisreal k3 — k4 is purely imaginary,
from which equations (6.36) follow.
Finally, by using the relation _ _
eIr 4 eI
2

=Ccosz,
and simple trigonometry we obtain
V(t) = gy A1 cos(wit + 1) + qy Az cos(wat + ¢2)

where

w2

Il
Q
_|_
2

Il

|
=
_|_
=

&
N
=

I
=
e
_|_
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and

c1+c2 c2 +c3
a=—2= , b=
mq mo

Notice that these two frequencies depend only on the configuration of the system, and not on the initial conditions.
The amplitudesd; and phases;, on the other hand, depend on the constants follows:

Ay =2lk1], Ag = 2|ks|
¢1 = arctang (Im(k1), Re(k1)) ¢o = arctany(Im(ks), Re(ks))

whereRe, Im denote the real and imaginary part and where the two-argument functioim, is defined as follows
for (z,y) # (0,0)

arctan(¥) ifz>0

tana(y, ) = 7+ arctan(Z) if x <0
arctmly, 1) =19 =« if 2 = 0andy > 0
-3 if x =0andy <0

and is undefined fofz, y) = (0, 0). This function returns the arctangentyfx (notice the order of the arguments) in
the proper quadrant, and extends the function by continuity along dixes.

The two constants; andks can be found from the given initial condition$0) andv(0) from equations (6.35)
and (6.25).



Chapter 7

Stochastic State Estimation

Perhaps the most important part of studying a problem in robotics or vision, as well as in most other sciences, is to
determine a good model for the phenomena and events that are involved. For instance, studying manipulation requires
defining models for how a robot arm can move and for how it interacts with the world. Analyzing image motion
implies defining models for how points move in space and how this motion projects onto the image. When motion
is involved, as is very often the case, models take on frequently the fodgr@mic systemsA dynamic system

is a mathematical description of a quantity that evolves over time. The theory of dynamic systems is both rich and
fascinating. Although in this chapter we will barely scratch its surface, we will consider one of its most popular and
useful aspects, the theory of state estimation, in the particular foktalofian filtering To this purpose, an informal
definition of a dynamic system is given in the next section. The definition is then illustrated by setting up the dynamic
system equations for a simple but realistic application, that of modeling the trajectory of an enemy mortar shell. In
sections 7.3 through 7.5, we will develop the theory of the Kalman filter, and in section 7.6 we will see that the shell
can be shot down before it hits us. As discussed in section 7.7, Kalman filtering has intimate connections with the
theory of algebraic linear systems we have developed in chapters 2 and 3.

7.1 Dynamic Systems

In its most general meaning, the tesystenrefers to some physical entity on which some action is performed by
means of an input. The system reacts to this input and produces an oytfage figure 7.1).

A dynamicsystem is a system whose phenomena occur over time. One often says that eesgbtesover time
Simple examples of a dynamic system are the following:

e An electric circuit, whose input is the current in a given branch and whose output is a voltage across a pair of
nodes.

e A chemical reactor, whose inputs are the external temperature, the temperature of the gas being supplied, and
the supply rate of the gas. The output can be the temperature of the reaction product.

e A mass suspended from a spring. The input is the force applied to the mass and the output is the position of the
mass.

u S y

input system output

Figure 7.1: A general system.

83
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In all these examples, what is input and what is output is a choice that depends on the application. Also, all the
guantities in the examples vary continuously with time. In other cases, as for instance for switching networks and
computers, it is more natural to consider time as a discrete variable. If time varies continuously, the system is said to
be continuousif time varies discretely, the system is said todigcrete

7.1.1 State

Given a dynamic system, continuous or discrete, the modeling problem is to somehow correlate inputs (causes) with
outputs (effects). The examples above suggest that the output at tiammot be determined in general by the value
assumed by the input quantity at the same point in time. Rather, the output is the result of the entire history of the
system. An effort of abstraction is therefore required, which leads to postulating a new quantity, caltetthenich
summarizes information about the past and the present of the system. Specifically, thedjalaleen by the state at
time ¢ must be sufficient to determine the output at the same point in time. Also, knowledge of(bgtanduy, .,),
that is, of the state at timg and the input over the interva) < t < t2, must allow computing the state (and hence
the output) at time,. For the mass attached to a spring, for instance, the state could be the position and velocity of
the mass. In fact, the laws of classical mechanics allow computing the new position and velocity of the masis at time
given its position and velocity at timg and the forces applied over the interjal ¢2). Furthermore, in this example,
the outputy of the system happens to coincide with one of the two state variables, and is therefore always deducible
from the latter.

Thus, in a dynamic system the input affects the state, and the output is a function of the state. For a discrete
system, the way that the input changes the state at time instant némiierthe new state at time instaht+ 1 can
be represented by a simple equation:

Xe+1 = f(Xk, Uk, k)

wheref is some function that represents the changeand the input at time:. Similarly, the relation between state
and output can be expressed by another function:

yk = h(xkak) .

A discrete dynamic systeia completely described by these two equations and an initial sgatén general, all
guantities are vectors.

For continuous systems, time does not come in quanta, so one cannot compués a function ok, ug, and
k, but rather computg(t2) as a functionad of x(¢;) and the entire input over the intervalt,, t5):

X(t2) = ¢(X(t1),u(:), t1,t2)

whereu(-) represents the entire functian not just one of its values. A description of the system in terms of func-
tions, rather than functionals, can be given in the caserefalar systemfor which the functional is continuous,
differentiable, and with continuous first derivative. In that case, one can show that there exists a ffisctobrthat
the statex(¢) of the system satisfies the differential equation

X(t) = f(x(t),u(t),1)

where the dot denotes differentiation with respect to time. The relation from state to output, on the other hand, is
essentially the same as for the discrete case:

y(t) = h(x(t), 1) .
Specifying the initial stat&, completes the definition of a continuous dynamic system.

7.1.2 Uncertainty

The systems defined in the previous section are calédrministi¢ since the evolution is exactly determined once
the initial statex at time0 is known. Determinism implies that both the evolution functjoand the output function
h are known exactly. This is, however, an unrealistic state of affairs. In practice, the laws that govern a given physical
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system are known up to some uncertainty. In fact, the equations themselves are simple abstractions of a complex
reality. The coefficients that appear in the equations are known only approximately, and can change over time as a
result of temperature changes, component wear, and so forth. A more realistic model then allows for some inherent,
unresolvable uncertainty in bothandh. This uncertainty can be representedhasethat perturbs the equations we

have presented so far. A discrete system then takes on the following form:

Xpy1 = f(Xps U, k) + g
yk = h(Xk7k)+§k:

and for a continuous system

X(t) = fx(),u(®),t) +n(t)
y(t) = h(x@®),t) +&() .

Without loss of generality, the noise distributions can be assumed to have zero mean, for otherwise the mean can be
incorporated into the deterministic part, that is, in eitliear h. The mean may not be known, but this is a different
story: in general the parameters that enter into the definitiorfsanfd 2, must be estimated by some method, and the
mean perturbations are no different.

A common assumption, which is sometimes valid and always simplifies the mathematics, ssath@t are
zero-mean Gaussian random variables with known covariance mafyiaed R, respectively.

7.1.3 Linearity

The mathematics becomes particularly simple when both the evolution furfcind the output functioh are linear.
Then, the system equations become

Xkt1 =  FpXp + GpUg + g
Yii = HpXg+ &k
for the discrete case, and
X(t) = F)x(t)+Gu(t) +n(t)

y(t) = H(t)x(t) +£(1)

for the continuous one. It is useful to specify the sizes of the matrices involved. We assume that theésgouector
in R?, the statex is in R™, and the outpuy is in R™. Then, thestate propagation matri¥’ is n x n, theinput matrix
G is n x p, and theoutput matrixH is m x n. The covariance matrik) of the system noise is n x n, and the
covariance matrix of the output noigas m x m.

7.2 An Example: the Mortar Shell

In this section, the example of the mortar shell will be discussed in order to see some of the technical issues involved
in setting up the equations of a dynamic system. In particular, we consider discretization issues because the physical
system is itself continuous, but we choose to model it as a discrete system for easier implementation on a computer.
In sections 7.3 through 7.5, we consider #tate estimatioproblem: given observations of the outgubver an
interval of time, we want to determine the statef the system. This is a very important task. For instance, in the case
of the mortar shell, the state is the (initially unknown) position and velocity of the shell, while the output is a set of
observations made by a tracking system. Estimating the state then leads to enough knowledge about the shell to allow
driving an antiaircraft gun to shoot the shell down in mid-flight.
You spotted an enemy mortar installation about thirty kilometers away, on a hill that looks about 0.5 kilometers
higher than your own position. You want to track incoming projectiles with a Kalman filter so you can aim your guns
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accurately. You do not know the initial velocity of the projectiles, so you just guess some values: 0.6 kilometers/second
for the horizontal component, 0.1 kilometers/second for the vertical component. Thus, your estimate of the initial state
of the projectile is
—0.6

30

0.1

0.5

<>

(=)

Il
nowe QL QL.

whered is the horizontal coordinate, is the vertical, you are g0, 0), and dots denote derivatives with respect to
time.
From your high-school physics, you remember that the laws of motion for a ballistic trajectory are the following:

d(t) = d(0)+d(0)t (7.1)
z(t) = 2(0)+ 2(0)t — %th (7.2)

whereg is the gravitational acceleration, equal%é x 10~2 kilometers per second squared. Since you do not trust
your physics much, and you have little time to get ready, you decide to ignore air drag. Because of this, you introduce
a state update covariance matf)x= 0.114, wherel, is the4 x 4 identity matrix.

All you have to track the shells is a camera pointed at the mortar that will rotate so as to keep the projectile at the
center of the image, where you see a blob that increases in size as the projectile gets closer. Thus, the aiming angle of
the camera gives you elevation information about the projectile’s position, and the size of the blob tells you something
about the distance, given that you know the actual size of the projectiles used and all the camera parameters. The
projectile’s elevation is

= 10002 (7.3)

when the projectile is &td, z). Similarly, the size of the blob in pixels is
1000
= 7.4
i Vd? + 22 74

You do not have very precise estimates of the noise that corrugisl s, SO you guess measurement covariances
R. = Ry = 1000, which you put along the diagonal oRax 2 diagonal measurement covariance makix
7.2.1 The Dynamic System Equation

Equations (7.1) and (7.2) are continuous. Since you are taking measurementgtevety2 seconds, you want to
discretize these equations. For theomponent, equation (7.2) yields

St dt) —2(t) = 2(0) + 2(0)(t +dt) — %g(t +dt)? — | 2(0) + 2(0)¢ — %gﬁ

= (2(0) — gt)dt — g(d)’

2(t)dt — %g(dt)z ,

sincez(0) — gt = 2(t).
Consequently, it + dt is time instant: 4+ 1 andt is time instantc, you have

. 1
Zk4+1 = 2k + Zdt — §g(dt)2 . (7.5)

The reasoning for the horizontal componéris the same, except that there is no acceleration:

A1 = dy, + ddt . (7.6)
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Equations (7.5) and (7.6) can be rewritten as a single system update equation
Xk;_;’_l = FXk; + Gu

where )

dy,
dy,
2k
2k

is the state, thed x 4 matrix F' depends onlt, the control scalat. is equal to—g, and the4 x 1 control matrixG
depends olt. The two matriced” andG are as follows:

Xg =

1 0 0 0 0

d 1 0 0 0
F=19 01 o0 G=|

0 0 dt 1 —dt”

—
7.2.2 The Measurement Equation

The two nonlinear equations (7.3) and (7.4) express the available measurements as a function of the true values of the
projectile coordinateg andz. We want to replace these equations with linear approximations. To this end, we develop
both equations as Taylor series around the current estimate and truncate them after the linear term. From the elevation
equation (7.3), we have

Zk — ék Z

Zk ék k 3
er = 1000—— ~ 1000 | — + —— — > (dp —di)| ,
dk dk dk di( )
so that after simplifying we can redefine the measurement to be the discrepancy from the estimated value:
¢ = ex — 100025 ~ 1000(ZE — g,y . 7.7
k= €k i (dk Z k) (7.7)

We can proceed similarly for equation (7.4):

1000 1000 1000&;C A 10002 .
Sk = - - N = - — A23/2(dk—dk)_7A2 A23/2(;€—zk)
Vi + 23 \/d% + 22 (di + %) (di + %)
and after simplifying:
2000 d 5
Sy = Sp =~ A —1000 | ] (7.8)
Ve @+ 22" @

The two measurementg ande), just defined can be collected into a single measurement vector

yk:|:Z;]::|7

and the two approximate measurement equations (7.7) and (7.8) can be written in the matrix form
Y = Hka- (79)

where the measurement matfi%, depends on the current state estintate

0 32 4 52)3/2 0 52 Zikz 3/2
H;, = —1000 (korf’k) (dk+z!i')
2 _ L
0 = i
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As the shell approaches us, we frantically start studying state estimation, and in particular Kalman filtering, in the
hope to build a system that lets us shoot down the shell before it hits us. The next few sections will be read under this
impending threat.

Knowing the model for the mortar shell amounts to knowing the laws by which the object moves and those that
relate the position of the projectile to our observations. So what else is there left to do? From the observations, we
would like to know where the mortar shell is right now, and perhaps predict where it will be in a few seconds, so we
can direct an antiaircraft gun to shoot down the target. In other words, we want tox¢nohe state of the dynamic
system. Clearly, knowing, instead is equivalent, at least when the dynamics of the system are known exactly (the
system noisey is zero). In fact, fromx, we can simulate the system up until tihghereby determining,. as well.

Most importantly, we do not want to have all the observations before we shoot: we would be dead by then. A scheme
that refines an initial estimation of the state as new observations are acquired is calbedsivé state estimation
system. TheKalman filteris one of the most versatile schemes for recursive state estimations. The original paper
by Kalman (R. E. Kalman, “A new approach to linear filtering and prediction problefnafisactions of the ASME
Journal Basic Engineering2:34-45, 1960) is still one of the most readable treatments of this subject from the point
of view of stochastic estimation.

Even without noise, a single observatipnmay not be sufficient to determine the staje(in the example, one
observation happens to be sufficient). This is a very interesting aspect of state estimation. It is really the ensemble of
all observations that let one estimate the state, and yet observations are processed one at a time, as they become avail-
able. A classical example of this situation in computer vision is the reconstruction of three-dimensional shape from
a sequence of images. A single image is two-dimensional, so by itself it conveys no three-dimensional information.
Kalman filters exist that recover shape information from a sequence ofimages. See for instance L. Matthies, T. Kanade,
and R. Szeliski, “Kalman filter-based algorithms for estimating depth from image sequdntasational Journal of
Computer Vision3(3):209-236, September 1989; and T.J. Broida, S. Chandrashekhar, and R. Chellappa, “Recursive
3-D motion estimation from a monocular image sequené&EE Transactions on Aerospace and Electronic Systems
26(4):639-656, July 1990.

Here, we introduce the Kalman filter from the simpler point of view of least squares estimation, since we have
developed all the necessary tools in the first part of this course. The next section defines the state estimation problem
for a discrete dynamic system in more detail. Then, section 7.4 defines the essential notions of estimation theory
that are necessary to understand the quantitative aspects of Kalman filtering. Section 7.5 develops the equation of the
Kalman filter, and section 7.6 reconsiders the example of the mortar shell. Finally, section 7.7 establishes a connection
between the Kalman filter and the solution of a linear system.

7.3 State Estimation

In this section, the estimation problem is defined in some more detail. Given a discrete dynamic system

Xer1 = FeXp + GrUg + g (7.10)
Ve = HpXp+& (7.12)

where the system noisg and the measurement noi&eare Gaussian variables,

m ~ N(O,Qk)
gk ~ N(O’Rk>a

as well as a (possibly completely wrong) estimggeof the initial state and an initial covariance matiiy of the
estimatex,, the Kalman filter computes the optimal estimatg, at timek given the measuremeryg, ...,y,. The

filter also computes an estimalg;, of the covariance of;,;, given those measurements. In these expressions, the hat
means that the quantity is an estimate. Also, the fiistthe subscript refers to which variable is being estimated, the
second to which measurements are being used for the estimate. Thus, in gepesathe estimate of the value that

X assumes at timegiven the firstj + 1 measurementg,, ....y;.

1The term “recursive” in the systems theory literature corresponds loosely to “incremental” or “iterative” in computer science.
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Figure 7.2: The update stage of the Kalman filter changes the estimate of the current system tstateke the
prediction of the measurement closer to the actual measurgmeRtopagation then accounts for the evolution of the
system state, as well as the consequent growing uncertainty.

7.3.1 Update

The covariance matri¥;,,, must be computed in order to keep the Kalman filter running, in the following sense. At
time k, just before the new measuremgptcomes in, we have an estimatg;,_, of the state vectox;, based on the
previous measuremerys, . ..,Y,_,. Now we face the problem of incorporating the new measuremgirito our
estimate, that is, of transforming,;,_; into X ;. If X x,—; were exact, we couldomputethe new measurement
without even looking at it, through the measurement equation (7.11). Exep if; is not exact, the estimate

Yitk—1 = HiXijp—1

is still our best bet. Now, becomes available, and we can considerés&ue

Mo =Yr = Yipe—1 = Yr — HiXpjp—1 -

If this residue is nonzero, we probably need to correct our estimate of thexgta@that the new prediction

Vi = HiXx

of the measurement value is closer to the measureypethan the old prediction

Vijk—1 = HiXije—1

that we made just before the new measurerggntas available.

The question however is, by how much should we correct our estimate of the state? We do not wantjtg make
coincidewith y,.. That would mean that we trust the new measurement completely, but that we do not trust our state
estimatex;,—; at all, even if the latter was obtained through a large number of previous measurements. Thus, we
need some criterion for comparing the quality of the new measureypewith that of our old estimat&;, ;. of the
state. The uncertainty about the formefg, the covariance of the observation error. The uncertainty about the state
just before the new measuremgntbecomes available By, ;,—;. Theupdatestage of the Kalman filter usd, and
Py 1 to weigh past evidence&(;—,) and new observationg/). This stage is represented graphically in the middle
of figure 7.2. Atthe same time, also the uncertainty meaByjig.; must be updated, so that it becomes available for
the next step. Because a new measurement has been read, this uncertainty becomes usuallygmaller;;, ;.

The idea is that as time goes by the uncertainty on the state decreases, while that about the measurements may
remain the same. Then, measurements count less and less as the estimate approaches its true value.
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7.3.2 Propagation

Just after arrival of the measuremgpt both state estimate and state covariance matrix have been updated as described
above. But between timeand timek + 1 both state and covariance may change. The state changes according to the
system equation (7.10), so our estimgte |, of X;11 giveny,, ...y, should reflect this change as well. Similarly,
because of the system noigg our uncertainty about this estimate may be somewhat greater than one time epoch ago.
The system equation (7.10) essentially “dead reckons” the new state from the old, and inaccuracies in our model of
how this happens lead to greater uncertainty. This increase in uncertainty depends on the system noise ¢@yariance
Thus, both state estimate and covariance mugirbpagatedo the new timek + 1 to yield the new state estimate
X.+1|x and the new covarianc®,  |,,. Both these changes are shown on the right in figure 7.2.

In summary, just as the state vectqr represents all the information necessary to describe the evolution of a
deterministic system, the covariance matf;, contains all the necessary information about the probabilistic part of
the system, that is, about how both the system ngisend the measurement noiggcorrupt the quality of the state
estimatex, .

Hopefully, this intuitive introduction to Kalman filtering gives you an ideanbfatthe filter does, and what infor-
mation it needs to keep working. To turn these concepts into a quantitative algorithm we need some preliminaries on
optimal estimation, which are discussed in the next section. The Kalman filter itself is derived in section 7.5.

7.4 BLUE Estimators

In what sense does the Kalman filter use covariance information to produce better estimates of the state? As we will
se later, the Kalman filter computes tBest Linear Unbiased Estima{BLUE) of the state. In this section, we see

what this means, starting with the definition of a linear estimation problem, and then considering the attributes “best”
and “unbiased” in turn.

7.4.1 Linear Estimation

Given a quantityy (the observatioi that is a known function of another (deterministic but unknown) quartithe
statg plus some amount of noise,

the estimation problem amounts to finding a function

X = L(y)

such thak is as close as possible xo The function. is called anestimator and its value given the observationg

is called arestimate Inverting a function is an example of estimation. If the functios invertible and the noise term

nis zero, thert is the inverse of,, no matter how the phrase “as close as possible” is interpreted. In fact, in that case
X is equal tax, and any distance betwe&randx must be zero. In particular, solving a square, nonsingular system

y = HX (7.13)
is, in this somewhat trivial sense, a problem of estimation. The optimal estimator is then represented by the matrix
L=H"

and the optimal estimate is
X=1Ly.

A less trivial example occurs, for a linear observation function, when the mAttias more rows than columns,
so that the system (7.13) is overconstrained. In this case, there is usually no invErsertd again one must say in
what sens& is required to be “as close as possible’xtoFor linear systems, we have so far considered the criterion
that prefers a particulak if it makes the Euclidean norm of the vectpr— Hx as small as possible. This is the
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(unweighted) least squaresiterion. In section 7.4.2, we will see that in a very precise sense ordinary least squares
solve a particular type of estimation problem, namely, the estimation problem for the observation equation (7.12) with
h alinear function aneh Gaussian zero-mean noise with the indentity matrix for covariance.

An estimator is said to binear if the function £ is linear. Notice that the observation functibrecan still be
nonlinear. If£ is required to be linear but is not, we will probably have an estimator that produces a worse estimate
than a nonlinear one. However, it still makes sense to look for the best possible linear estimator. The best estimator
for a linear observation function happens to be a linear estimator.

7.4.2 Best

In order to define what is meant by a “best” estimator, one needs to define a measure of goodness of an estimate. In
the least squares approach to solving a linear system like (7.13), this distance is defined as the Euclidean norm of the
residue vector

y — HX

between the left and the right-hand sides of equation (7.13), evaluated at the sollRieplacing (7.13) by a “noisy
equation”,
y=Hx+n (7.14)

does not change the nature of the problem. Even equation (7.13) has no exact solution when there are more independent
equations than unknowns, so requiring equality is hopeless. What the least squares approach is really saying is that
even at the solutior there is some residue

n=y-— HX (7.15)

and we would like to make that residue as small as possible in the sense of the Euclidean norm. Thus, an overcon-
strained system of the form (7.13) and its “noisy” version (7.14) are really the same problem. In fact, (7.14) is the
correct version, if the equality sign is to be taken literally.

The noise term, however, can be used to generalize the problem. In fact, the Euclidean norm of the residue (7.15)
treats all components (all equations in (7.14)) equally. In other words, each equation counts the same when computing
the norm of the residue. However, different equations can have noise terms of different variance. This amounts to
saying that we have reasons to prefer the quality of some equations over others or, alternatively, that we want to
enforce different equations to different degrees. From the point of view of least squares, this can be enforced by some
scaling of the entries af or, even, by some linear transformation of them:

n— Wwn

so instead of minimizing/n||? = n”'n (the square is of course irrelevant when it comes to minimization), we now
minimize
[Wn|? =n"R™n

where
R'=wTw

is a symmetric, nonnegative-definite matrix. This minimization problem, caletghted least squarets only slightly
different from its unweighted version. In fact, we have

Wn=W(y— Hx)=Wy—WHX

so we are simply solving the system
Wy =WHX

in the traditional, “unweighted” sense. We know the solution from normal equations:

X = ((WH)"WH)" (WH)"Wy = (HT R~ H)"'"H" Ry .
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Interestingly, this same solution is obtained from a completely different criterion of goodness of a sol(tios
criterion is a probabilistic one. We consider this different approach because it will let us show that the Kalman filter is
optimal in a very useful sense.

The new criterion is the so-calledinimum-covarianceriterion. The estimat& of x is some function of the
measurementg which in turn are corrupted by noise. Thiiss a function of a random vector (noise), and is therefore
a random vector itself. Intuitively, if we estimate the same quantity many times, from measurements corrupted by
different noise samples from the same distribution, we obtain different estimates. In this sense, the estimates are
random.

It makes therefore sense to measure the quality of an estimator by requiring that its variance be as small as possible:
the fluctuations of the estimatewith respect to the true (unknown) valdefrom one estimation experiment to the
next should be as small as possible. Formally, we want to choose a linear estinsaich that the estimaté&s= Ly
it produces minimize the followingovariancematrix:

P=E[x-%)Xx-x7].

Minimizing a matrix, however, requires a notion of “size” for matrices: how largé?sFortunately, most inter-
esting matrix norms are equivalent, in the sense that given two different definitidfhsand|| P||» of matrix norm
there exist two positive scalats 3 such that

allPlly < [[Pll2 < BIIP: -

Thus, we can pick any norm we like. In fact, in the derivations that follow, we only use properties shared by all norms,
so which norm we actually use is irrelevant. Some matrix norms were mentioned in section 3.2.

7.4.3 Unbiased

In additionto requiring our estimator to be linear and with minimum covariance, we also want ititbtzsedin the
sense that if repeat the same estimation experiment many times we neither consistently overestimate nor consistently
underestimat&. Mathematically, this translates into the following requirement:

Ex—X%X]=0 and E[X]=E[X.

7.4.4 The BLUE

We now address the problem of finding the Best Linear Unbiased Estimator (BLUE)
X=1Ly
of x given thaty depends ox according to the model (7.14), which is repeated here for convenience:
y=HxX+n. (7.16)
First, we give a necessary and sufficient conditionffdo be unbiased.
Lemma 7.4.1 Letn in equation (7.16) be zero mean. Then the linear estimatisrunbiased if an only if
LH=1,
the identity matrix.
Proof.

Ex—X = E[x— Ly]=E[x— L(HXx+n)]
= E[(I-LH)X|— FE[Ln]= (I — HL)E[X]
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sinceE[Ln] = L E[n] andE[n] = 0. For this to hold for alk we needl — LH = 0. A

And now the main result.
Theorem 7.4.2 The Best Linear Unbiased Estimator (BLUE)
X=Ly
for the measurement model
y=HX+n
where the noise vectar has zero mean and covarianégis given by
L= (H'R'H)'H"R™!
and the covariance of the estimatés
P=E[(x-Xx-x)T)=(H'R'H)™". (7.17)
Proof. We can write
P = Blx-%)(x—%)"] = E[(x - Ly)(x - Ly)"]
= E[(x— LHx — Ln)(x — LHx — Ln)"] = E[((I — LH)x — Ln)((I — LH)x — Ln)7]
= E[Lnn’LT) = LEnT)L" = LRLT
becausd. is unbiased, so thditH = I.
To show that
Lo=(H'R'H)'HTR™! (7.18)
is the best choice, ldt be any (other) linear unbiased estimator. We can trivially write
L=1Ly+ (L—Lo)
and
P = LRL" =[Lo+ (L — Lo)|R[Lo + (L — Lo)]*
= LoRL{ + (L — Lo)RLY + LoR(L — Lo)" + (L — Lo)R(L — Lo)™ .
From (7.18) we obtain
RLY = RR'HHTR'H)' = HH"R'H)™!
so that
(L — Lo)RLY = (L — Lo)H(H'R™'H)™' = (LH — LoH)(HTR™'H)™" .
But L andLq are unbiased, sbH = LgH = I, and
(L—Lo)RLE =0.
The termLoR(L — Lg)7 is the transpose of this, so it is zero as well. In conclusion,
P = LoRLY + (L — Lo)R(L — Lo)" ,
the sum of two positive definite or at least semidefinite matrices. For such matrices, the norm of the sum is greater or
equal to either norm, so this expression is minimized when the second term vanishes, that i5,-wiign

This proves that the estimator given by (7.18) is the best, that is, that it has minimum covariance. To prove that the
covarianceP of X is given by equation (7.17), we simply substitétgfor L in P = LRL":

P = LyRLY =(HTR'H)'HTR'RR'HHTR'H)™!
(H'RH) '"H'R'HH"R'H)' = (H'R'H)™!
as promised. A
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7.5 The Kalman Filter;: Derivation

We now have all the components necessary to write the equations for the Kalman filter. To summarize, given a linear
measurement equation
y=HX+n

wheren is a Gaussian random vector with zero mean and covariance nmatrix
n~N(,R),

the best linear unbiased estimétef x is
x=PHTR 1y

where the matrix
PE2E[x—x)(&%—x)T) = (HTR'H)™"

is the covariance of the estimation error.
Given a dynamic system with system and measurement equations

Xer1 = FeXp + GrUy + g (7.19)
Ve = HpXp+&
where the system noisg and the measurement noigeare Gaussian random vectors,
e~ N(0,Qk)
e~ N(O,Ry),

as well as the best, linear, unbiased estimgtef the initial state with an error covariance matiiy, the Kalman

filter computes the best, linear, unbiased estimate at timek given the measuremerys, ..., y,. The filter also
computes the covariandg,;, of the errorx,,;, — Xx given those measurements. Computation occurs according to the
phases of update and propagation illustrated in figure 7.2. We now apply the results from optimal estimation to the
problem of updating and propagating the state estimates and their error covariances.

7.5.1 Update

Attime &, two pieces of data are available. One is the estimgie ; of the statex; given measurements up to but not
includingy, . This estimate comes with its covariance matfy;._,. Another way of saying this is that the estimate
Xj|x—1 differs from the true state, by an error terne, whose covariance iBy,j,—:

)A(k|k_1 =Xi + € (720)

with
E[ek;eg] - Pklkfl .

The other piece of data is the new measuremgegriiself, which is related to the stakg by the equation
Vi = HiXg + &k (7.21)

with error covariance
El&&l = Ry, .

We can summarize this available information by grouping equations 7.20 and 7.21 into one, and packaging the error
covariances into a single, block-diagonal matrix. Thus, we have

y=HX;+n
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where
| Xkt go| 1 no | &
Y { Vi } [Hk ’ & |
and wheren has covariance
| Peg—1 O
R_{ ; R]

As we know, the solution to this classical estimation problem is

Xpe = PurHTR™'Y
Py = (H'R'H)™'.
This pair of equations represents the update stage of the Kalman filter. These expressions are somewhat wasteful,

because the matricd$ and R contain many zeros. For this reason, these two update equations are now rewritten in a
more efficient and more familiar form. We have

—1 T p—1
Py H'R'H
P! 0 I
—_ I HT klk—1
[ ] L
- Pk_‘;_l—i—HkTR,:lHk
and
Xe = PupHTR™'Y
= Py [ P,;l,i_l HI'R! } {ka—l }

Yi
_ -1 T p—1
= Prupe(Ppp_ Xupe—1 + Hi B Yy)

= Pun((Pry — Hi Ry 'Hy)Xepe—1 + Hi Ry 'Yy
= -1+ PueHy BN Yy — HiXppo—1) -
In the last line, the difference
A ~
N =Y — HiXgp—1
is theresiduebetween the actual measuremgptand its best estimate basedxq,_, and the matrix
Ky £ Py HE R
is usually referred to as th€alman gainmatrix, because it specifies the amount by which the residue must be multi-

plied (or amplified) to obtain the correction term that transforms the old estiate, of the statex; into its new
estimatex, ;.

7.5.2 Propagation

Propagation is even simpler. Since the new state is related to the old through the system equation 7.19, and the noise
termny, is zero mean, unbiasedness requires

)A(k+1|k = Fk)A(k.|k + GrUuy
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which is the state estimate propagation equation of the Kalman filter. The error covariance matrix is easily propagated
thanks to the linearity of the expectation operator:

Popir = ElRs1je — Xes1) Kesre — Xng1) ']
E[(Fr Rk — Xk) — ) (Fr (Xgjpe — Xx) — Uk)T]
= FB[(Xek — Xk) Repe — Xk) T TFL + Elneni |
= FpPyFl + Qx

where the system noisg and the previous estimation errqyj;, — X were assumed to be uncorrelated.

7.5.3 Kalman Filter Equations
In summary, the Kalman filter evolves an initial estimate and an initial error covariance matrix,

A

. . A
Xo—1 =Xo andPy_; = Fy,

both assumed to be given, by the update equations

Xk = Kijp—1 + K (Ve — HeXgjp—1)
1 pt Tp-1
Pk|k: = Pk\k71+Hk R, Hj,

where the Kalman gain is defined as
Ky = Py H Ry

and by the propagation equations

X1k =  FrXpp + Grug,
Povie = FruPyiFl +Qr

7.6 Results of the Mortar Shell Experiment

In section 7.2, the dynamic system equations for a mortar shell were set up. Matlab routines available through the
class Web page implement a Kalman filter (with naive numerics) to estimate the state of that system from simulated
observations. Figure 7.3 shows the true and estimated trajectories. Notice that coincidence of the trajectories does not
imply that the state estimate is up-to-date. For this it is also necessary that any given point of the trajectory is reached
by the estimate at the same time instant. Figure 7.4 shows that the distance between estimated and true target position
does indeed converge to zero, and this occurs in time for the shell to be shot down. Figure 7.5 shows the 2-norm of the
covariance matrix over time. Notice that the covariance goes to zero only asymptotically.

7.7 Linear Systems and the Kalman Filter

In order to connect the theory of state estimation with what we have learned so far about linear systems, we now show
that estimating the initial state from the firstk + 1 measurements, that is, obtainixyg;,,, amounts to solving a linear
system of equations with suitable weights for its rows.

The basic recurrence equations (7.10) and (7.11) can be expanded as follows:

Vi = HiXp+& = Hy(Fr—1Xp—1 + Gr—1Uk—1 + Mk—1) + &k
= HpFy_1Xp—1 + HpyGr_1Up—1 + Hpnr—1 + &k
HyFr—1(Fy—oXp—2 + Gr—oUk—2 + Ni—2) + HpGr_1Uk—1 + Hpnp—1 + &
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true (dashed) and estimated (solid) missile trajectory
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Figure 7.3: The true and estimated trajectories get closer to one another. Trajectories start on the right.

distance between true and estimated missile position vs. time
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Figure 7.4: The estimate actually closes in towards the target.
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norm of the state covariance matrix vs time
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Figure 7.5: After an initial increase in uncertainty, the norm of the state covariance matrix converges to zero. Upwards
segments correspond to state propagation, downwards ones to state update.

= HyFy_1Fi_oXg—2 + Hy(Fr—1Gr—oUp—2 + Gp_1Ug_1) +
Hi(Fr—1nk—2 + ni—1) + &k

= HpF._1...FyXo+ Hk(Fk:—l . F1Goug + ...+ Gr_1U_1) +
Hy(Fy—1... Fino+ ...+ nk—1) + &k

or in a more compact form,

k

Yy = Hp®(k —1,0)X0 + Hy, > ®(k — 1,5)Gj_1U;-1 + v (7.22)
j=1
where
N _ | F...F; forl>j
(L.) —{ 1 forl < j

and the term

k
vi = Hy, ) @k —1,)mj-1 + &
j=1

iS noise.

The key thing to notice about this somewhat intimidating expression is that fd¢ &igya linear system in, the
initial state of the system. We can write one system like the one in equation (7.22) for every valee @f. . ., K,
whereK is the last time instant considered, and we obtain a large system of the form

zg = UgXo+ 9x + Nk (7.23)
where
Yo
Ik =
Yk



7.7. LINEAR SYSTEMS AND THE KALMAN FILTER 99

Hy
HFy
Vg = .
Hi®(K —1,0)
[ 0
HlGOUO
9 = :
L HK((P(K -1, 1)GOUo + ...+ @(K -1, K)GK_luK_l)
- "
Ng =
L I/K

Without knowing anything about the statistics of the noise vegtpiin equation (7.23), the best we can do is to
solve the system
Zg = YgXo + 9k

in the sense of least squares, to obtain an estimatg fodm the measuremenys, . .., yx:
Ko = Ul (2 — gi)

Where\If}( is the pseudoinverse df . We know that ifU 5 has full rank, the result with the pseudoinverse is the
same as we would obtain by solving the normal equations, so that

¥l = (V) v

The least square solution to system (7.23) minimizes the residue between the left and the right-hand side under the
assumption that all equations are to be treated the same way. This is equivalent to assuming that all the noise terms in
ng are equally important. However, we know the covariance matrices of all these noise terms, so we ought to be able
to do better, and weigh each equation to keep these covariances into account. Intuitively, a small covariance means that
we believe in that measurement, and therefore in that equation, which should consequently be weighed more heavily
than others. The quantitative embodiment of this intuitive idea is at the core of the Kalman filter.

In summary, the Kalman filter for a linear system has been shown to be equivalent to a linear equation solver, under
the assumption that the noise that affects each of the equations has the same probability distribution, that is, that all
the noise terms img in equation 7.23 are equally important. However, the Kalman filter differs from a linear solver
in the following important respects:

1. The noise terms ing in equation 7.23 areotequally important. Measurements come with covariance matrices,
and the Kalman filter makes optimal use of this information for a proper weighting of each of the scalar equations
in (7.23). Better information ought to yield more accurate results, and this is in fact the case.

2. The system (7.23) is not solved all at once. Rather, an initial solution is refined over time as new measurements
become available. The final solution can be proven to be exactly equal to solving system (7.23) all at once.
However, having better and better approximations to the solution as new data come in is much preferable in a
dynamic setting, where one cannot in general wait for all the data to be collected. In some applications, data my
never stop arriving.

3. A solution for the estimatg,, ;, of the current state is given, and not only for the estimigieof the initial state.
As time goes by, knowledge of the initial state may obsolesce and become less and less useful. The Kalman
filter computes up-to-date information about the current state.



