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Chapter 1

Introduction

Fields such as robotics or computer vision are interdisciplinary subjects at the intersection of engineering and computer
science. By their nature, they deal with both computers and the physical world. Although the former are in the latter,
the workings of computers are best described in the black-and-white vocabulary of discrete mathematics, which is
foreign to most classical models of reality, quantum physics notwithstanding.

This class surveys some of the key tools of applied math to be used at the interface of continuous and discrete. It
is not on robotics or computer vision, nor does it cover any other application area. Applications evolve rapidly, but
their mathematical foundations remain. Even if you will not pursue any of these fields, the mathematics that you learn
in this class will not go wasted. To be sure, applied mathematics is a discipline in itself and, in many universities, a
separate department. Consequently, this class can be a quick tour at best. It does not replace calculus or linear algebra,
which are assumed as prerequisites, nor is it a comprehensive survey of applied mathematics. What is covered is a
compromise between the time available and what is useful and fun to talk about. Even if in some cases you may have
to wait until you take an applied class to fully appreciate the usefulness of a particular topic, I hope that you will enjoy
studying these subjects in their own right.

1.1 Who Should Take This Class

The main goal of this class is to present a collection of mathematical tools for both understanding and solving problems
in fields that manipulate models of the real world, such as robotics, artificial intelligence, vision, engineering, or several
aspects of the biological sciences. Several classes at most universities each cover some of the topics presented in this
class, and do so in much greater detail. If you want to understand the full details of any one of the topics in the
syllabus below, you should take one or more of these other classes instead. If you want to understand how these tools
are implemented numerically, you should take one of the classes in the scientific computing program, which again
cover these issues in much better detail. Finally, if you want to understand robotics, vision, or other applied fields, you
should take classes in these subjects, since this course is not on applications.

On the other hand, if you do plan to study robotics, vision, or other applied subjects in the future, and you regard
yourself as auserof the mathematical techniques outlined in the syllabus below, then you may benefit from this course.
Of the proofs, we will only see those that add understanding. Of the implementation aspects of algorithms that are
available in, say, Matlab or LApack, we will only see the parts that we need to understand when we use the code.

In brief, we will be able to cover more topics than other classes because we will be often (but not always) un-
concerned with rigorous proof or implementation issues. The emphasis will be on intuition and on practicality of the
various algorithms. For instance, why are singular values important, and how do they relate to eigenvalues? What are
the dangers of Newton-style minimization? How does a Kalman filter work, and why do PDEs lead to sparse linear
systems? In this spirit, for instance, we discuss Singular Value Decomposition and Schur decomposition both because
they never fail and because they clarify the structure of an algebraic or a differential linear problem.
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1.2 Syllabus

Here is the ideal syllabus, but how much we cover depends on how fast we go.

1. Introduction

2. Unknown numbers

2.1 Algebraic linear systems

2.1.1 Characterization of the solutions to a linear system
2.1.2 Gaussian elimination
2.1.3 The Singular Value Decomposition
2.1.4 The pseudoinverse

2.2 Function optimization

2.2.1 Newton and Gauss-Newton methods
2.2.2 Levenberg-Marquardt method
2.2.3 Constraints and Lagrange multipliers

3. Unknown functions of one real variable

3.1 Ordinary differential linear systems

3.1.1 Eigenvalues and eigenvectors
3.1.2 The Schur decomposition
3.1.3 Ordinary differential linear systems
3.1.4 The matrix zoo
3.1.5 Real, symmetric, positive-definite matrices

3.2 Statistical estimation

3.2.1 Linear estimation
3.2.2 Weighted least squares
3.2.3 The Kalman filter

4. Unknown functions of several variables

4.1 Tensor fields of several variables

4.1.1 Grad, div, curl
4.1.2 Line, surface, and volume integrals
4.1.3 Green’s theorem and potential fields of two variables
4.1.4 Stokes’ and divergence theorems and potential fields of three variables
4.1.5 Diffusion and flow problems

4.2 Partial differential equations and sparse linear systems

4.2.1 Finite differences
4.2.2 Direct versus iterative solution methods
4.2.3 Jacobi and Gauss-Seidel iterations
4.2.4 Successive overrelaxation

4.3 Calculus of variations

4.3.1 Euler-Lagrange equations
4.3.2 The brachistochrone
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1.3 Discussion of the Syllabus

In robotics, vision, physics, and any other branch of science whose subject belongs to or interacts with the real
world, mathematical models are developed that describe the relationship between different quantities. Some of these
quantities are measured, orsensed, while others are inferred by calculation. For instance, in computer vision, equations
tie the coordinates of points in space to the coordinates of corresponding points in different images. Image points are
data, world points are unknowns to be computed.

Similarly, in robotics, a robot arm is modeled by equations that describe where each link of the robot is as a
function of the configuration of the link’s own joints and that of the links that support it. The desired position of the
end effector, as well as the current configuration of all the joints, are the data. The unknowns are the motions to be
imparted to the joints so that the end effector reaches the desired target position.

Of course, what is data and what is unknown depends on the problem. For instance, the vision system mentioned
above could be looking at the robot arm. Then, the robot’s end effector position could be the unknowns to be solved
for by the vision system. Once vision has solvedits problem, it could feed the robot’s end-effector position as data for
the robot controller to use in its own motion planning problem.

Sensed data are invariably noisy, because sensors have inherent limitations of accuracy, precision, resolution,
and repeatability. Consequently, the systems of equations to be solved are typically overconstrained: there are more
equations than unknowns, and it is hoped that the errors that affect the coefficients of one equation are partially
cancelled by opposite errors in other equations. This is the basis ofoptimizationproblems: Rather than solving a
minimal system exactly, an optimization problem tries to solve many equations simultaneously, each of them only
approximately, but collectively as well as possible, according to some global criterion. Least squares is perhaps the
most popular such criterion, and we will devote a good deal of attention to it.

In summary, the problems encountered in robotics and vision, as well as other applications of mathematics, are
optimization problems. A fundamental distinction between different classes of problems reflects the complexity of the
unknowns. In the simplest case, unknowns are scalars. When there is more than one scalar, the unknown is a vector
of numbers, typically either real or complex. Accordingly, the first part of this course will be devoted to describing
systems of algebraic equations, especially linear equations, and optimization techniques for problems whose solution
is a vector of reals. The main tool for understanding linear algebraic systems is the Singular Value Decomposition
(SVD), which is both conceptually fundamental and practically of extreme usefulness. When the systems are nonlinear,
they can be solved by various techniques of function optimization, of which we will consider the basic aspects.

Since physical quantities often evolve over time, many problems arise in which the unknowns are themselves
functions of time. This is our second class of problems. Again, problems can be cast as a set of equations to be solved
exactly, and this leads to the theory of Ordinary Differential Equations (ODEs). Here, “ordinary” expresses the fact
that the unknown functions depend on just one variable (e.g., time). The main conceptual tool for addressing ODEs is
the theory of eigenvalues, and the primary computational tool is the Schur decomposition.

Alternatively, problems with time varying solutions can be stated as minimization problems. When viewed glob-
ally, these minimization problems lead to the calculus of variations. When the minimization problems above are
studied locally, they become state estimation problems, and the relevant theory is that of dynamic systems and Kalman
filtering.

The third category of problems concerns unknown functions of more than one variable. The images taken by a
moving camera, for instance, are functions of time and space, and so are the unknown quantities that one can compute
from the images, such as the distance of points in the world from the camera. This leads to Partial Differential equations
(PDEs), or to extensions of the calculus of variations. In this class, we will see how PDEs arise, and how they can be
solved numerically.
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1.4 Books

The class will be based on these lecture notes, and additional notes handed out when necessary. Other useful references
include the following.

• R. Courant and D. Hilbert,Methods of Mathematical Physics,Volume I and II, John Wiley and Sons, 1989.

• D. A. Danielson,Vectors and Tensors in Engineering and Physics,Addison-Wesley, 1992.

• J. W. Demmel,Applied Numerical Linear Algebra, SIAM, 1997.

• A. Gelbet al., Applied Optimal Estimation,MIT Press, 1974.

• P. E. Gill, W. Murray, and M. H. Wright,Practical Optimization, Academic Press, 1993.

• G. H. Golub and C. F. Van Loan,Matrix Computations,2nd Edition, Johns Hopkins University Press, 1989, or
3rd edition, 1997.

• W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes in C,2nd Edition,
Cambridge University Press, 1992.

• G. Strang,Introduction to Applied Mathematics,Wellesley- Cambridge Press, 1986.

• A. E. Taylor and W. R. Mann,Advanced Calculus,3rd Edition, John Wiley and Sons, 1983.

• L. N. Trefethen and D. Bau, III,Numerical Linear Algebra, SIAM, 1997.

• R. Weinstock,Calculus of Variations,Dover, 1974.



Chapter 2

Algebraic Linear Systems

An algebraic linear system is a set ofm equations inn unknown scalars, which appear linearly. Without loss of
generality, an algebraic linear system can be written as follows:

Ax = b (2.1)

whereA is anm × n matrix,x is ann-dimensional vector that collects all of the unknowns, andb is a known vector
of dimensionm. In this chapter, we only consider the cases in which the entries ofA, b, andx are real numbers.

Two reasons are usually offered for the importance of linear systems. The first is apparently deep, and refers
to the principle of superposition of effects. For instance, in dynamics, superposition of forces states that if force
f1 produces accelerationa1 (both possibly vectors) and forcef2 produces accelerationa2, then the combined force
f1 + αf2 produces accelerationa1 + αa2. This is Newton’s second law of dynamics, although in a formulation less
common than the equivalentf = ma. Because Newton’s laws are at the basis of the entire edifice of Mechanics,
linearity appears to be a fundamental principle of Nature. However, like all physical laws, Newton’s second law is an
abstraction, and ignores viscosity, friction, turbulence, and other nonlinear effects. Linearity, then, is perhaps more in
the physicist’s mind than in reality: if nonlinear effects can be ignored, physical phenomena are linear!

A more pragmatic explanation is that linear systems are the only ones we know how to solve in general. This
argument, which is apparently more shallow than the previous one, is actually rather important. Here is why. Given
two algebraic equations in two variables,

f(x, y) = 0
g(x, y) = 0 ,

we can eliminate, say,y and obtain the equivalent system

F (x) = 0
y = h(x) .

Thus, the original system is as hard to solve as it is to find the roots of the polynomialF in a single variable. Unfortu-
nately, iff andg have degreesdf anddg, the polynomialF has generically degreedfdg.

Thus, the degree of a system of equations is, roughly speaking, the product of the degrees. For instance, a system of
m quadratic equations corresponds to a polynomial of degree2m. The only case in which the exponential is harmless
is when its base is1, that is, when the system is linear.

In this chapter, we first review a few basic facts about vectors in sections 2.1 through 2.4. More specifically, we
develop enough language to talk about linear systems and their solutions in geometric terms. In contrast with the
promise made in the introduction, these sections contain quite a few proofs. This is because a large part of the course
material is based on these notions, so we want to make sure that the foundations are sound. In addition, some of the
proofs lead to useful algorithms, and some others prove rather surprising facts. Then, in section 2.5, we characterize
the solutions of linear algebraic systems.
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8 CHAPTER 2. ALGEBRAIC LINEAR SYSTEMS

2.1 Linear (In)dependence

Givenn vectorsa1, . . . , an andn real numbersx1, . . . , xn, the vector

b =
n∑

j=1

xjaj (2.2)

is said to be alinear combinationof a1, . . . , an with coefficientsx1, . . . , xn.
The vectorsa1, . . . , an are linearly dependentif they admit the null vector as a nonzero linear combination. In

other words, they are linearly dependent if there is a set of coefficientsx1, . . . , xn, not all of which are zero, such that

n∑

j=1

xjaj = 0 . (2.3)

For later reference, it is useful to rewrite the last two equalities in a different form. Equation (2.2) is the same as

Ax = b (2.4)

and equation (2.3) is the same as
Ax = 0 (2.5)

where

A =
[

a1 · · · an

]
, x =




x1

...
xn


 , b =




b1

...
bm


 .

If you are not convinced of these equivalences, take the time to write out the components of each expression for a
small example. This is important. Make sure that you are comfortable with this.

Thus, the columns of a matrixA are dependent if there is a nonzero solution to the homogeneous system (2.5).
Vectors that are not dependent areindependent.

Theorem 2.1.1 The vectorsa1, . . . , an are linearly dependent iff1 at least one of them is a linear combination of the
others.

Proof. In one direction, dependency means that there is a nonzero vectorx such that

n∑

j=1

xjaj = 0 .

Let xk be nonzero for somek. We have

n∑

j=1

xjaj = xkak +
n∑

j=1, j 6=k

xjaj = 0

so that

ak = −
n∑

j=1, j 6=k

xj

xk
aj (2.6)

as desired. The converse is proven similarly: if

ak =
n∑

j=1, j 6=k

xjaj

1“iff” means “if and only if.”
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for somek, then
n∑

j=1

xjaj = 0

by lettingxk = −1 (so thatx is nonzero). ∆ 2

We can make the first part of the proof above even more specific, and state the following

Lemma 2.1.2 If n nonzero vectorsa1, . . . , an are linearly dependent then at least one of them is a linear combination
of the ones thatprecedeit.

Proof. Just letk be thelastof the nonzeroxj . Thenxj = 0 for j > k in (2.6), which then becomes

ak =
n∑

j<k

xj

xk
aj

as desired. ∆

2.2 Basis

A seta1, . . . , an is said to be abasisfor a setB of vectors if theaj are linearly independent and every vector inB can
be written as a linear combination of them.B is said to be avector spaceif it containsall the linear combinations of
its basis vectors. In particular, this implies that every linear space contains the zero vector. The basis vectors are said
to spanthe vector space.

Theorem 2.2.1 Given a vectorb in the vector spaceB and a basisa1, . . . , an for B, the coefficientsx1, . . . , xn such
that

b =
n∑

j=1

xjaj

are uniquely determined.

Proof. Let also

b =
n∑

j=1

x′jaj .

Then,

0 = b− b =
n∑

j=1

xjaj −
n∑

j=1

x′jaj =
n∑

j=1

(xj − x′j)aj

but because theaj are linearly independent, this is possible only whenxj − x′j = 0 for everyj. ∆

The previous theorem is a very important result. An equivalent formulation is the following:

If the columnsa1, . . . , an of A are linearly independent and the systemAx = b admits a solution, then
the solution is unique.

2This symbol marks the end of a proof.



10 CHAPTER 2. ALGEBRAIC LINEAR SYSTEMS

Pause for a minute to verify that this formulation is equivalent.

Theorem 2.2.2 Two different bases for the same vector spaceB have the same number of vectors.

Proof. Let a1, . . . , an anda′1, . . . , a′n′ be two different bases forB. Then eacha′j is in B (why?), and can therefore
be written as a linear combination ofa1, . . . , an. Consequently, the vectors of the set

G = a′1, a1, . . . , an

must be linearly dependent. We call a set of vectors that contains a basis forB a generating setfor B. Thus,G is a
generating set forB.

The rest of the proof now proceeds as follows: we keep removinga vectors fromG and replacing them witha′

vectors in such a way as to keepG a generating set forB. Then we show that we cannot run out ofa vectors before we
run out ofa′ vectors, which proves thatn ≥ n′. We then switch the roles ofa anda′ vectors to conclude thatn′ ≥ n.
This proves thatn = n′.

From lemma 2.1.2, one of the vectors inG is a linear combination of those preceding it. This vector cannot bea′1,
since it has no other vectors preceding it. So it must be one of theaj vectors. Removing the latter keepsG a generating
set, since the removed vector depends on the others. Now we can adda′2 to G, writing it right aftera′1:

G = a′1, a′2, . . . .

G is still a generating set forB.
Let us continue this procedure until we run out of eithera vectors to remove ora′ vectors to add. Thea vectors

cannot run out first. Suppose in factper absurdumthat G is now made only ofa′ vectors, and that there are still
left-overa′ vectors that have not been put intoG. Since thea′s form a basis, they are mutually linearly independent.
SinceB is a vector space, all thea′s are inB. But thenG cannot be a generating set, since the vectors in it cannot
generate the left-overa′s, which are independent of those inG. This is absurd, because at every step we have made
sure thatG remains a generating set. Consequently, we must run out ofa′s first (or simultaneously with the lasta).
That is,n ≥ n′.

Now we can repeat the whole procedure with the roles ofa vectors anda′ vectors exchanged. This shows that
n′ ≥ n, and the two results together imply thatn = n′. ∆

A consequence of this theorem is that any basis forRm hasm vectors. In fact, the basis ofelementary vectors

ej = jth column of them×m identity matrix

is clearly a basis forRm, since any vector

b =




b1

...
bm




can be written as

b =
m∑

j=1

bjej

and theej are clearly independent. Since this elementary basis hasm vectors, theorem 2.2.2 implies that any other
basis forRm hasm vectors.

Another consequence of theorem 2.2.2 is thatn vectors of dimensionm < n are bound to be dependent, since any
basis forRm can only havem vectors.

Since all bases for a space have the same number of vectors, it makes sense to define thedimensionof a space as
the number of vectors in any of its bases.
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2.3 Inner Product and Orthogonality

In this section we establish the geometric meaning of the algebraic notions of norm, inner product, projection, and
orthogonality. The fundamental geometric fact that is assumed to be known is thelaw of cosines: given a triangle with
sidesa, b, c (see figure 2.1), we have

a2 = b2 + c2 − 2bc cos θ

whereθ is the angle between the sides of lengthb andc. A special case of this law is Pythagoras’ theorem, obtained
whenθ = ±π/2.

θ

c

b

a

Figure 2.1: The law of cosines states thata2 = b2 + c2 − 2bc cos θ.

In the previous section we saw that any vector inRm can be written as the linear combination

b =
m∑

j=1

bjej (2.7)

of the elementary vectors that point along the coordinate axes. The length of these elementary vectors is clearly one,
because each of them goes from the origin to the unit point of one of the axes. Also, any two of these vectors form a
90-degree angle, because the coordinate axes are orthogonal by construction. How long isb? From equation (2.7) we
obtain

b = b1e1 +
m∑

j=2

bjej

and the two vectorsb1e1 and
∑m

j=2 bjej are orthogonal. By Pythagoras’ theorem, the square of the length‖b‖ of b is

‖b‖2 = b2
1 + ‖

m∑

j=2

bjej‖2 .

Pythagoras’ theorem can now be applied again to the last sum by singling out its first termb2e2, and so forth. In
conclusion,

‖b‖2 =
m∑

j=1

b2
j .

This result extends Pythagoras’ theorem tom dimensions.
If we define theinner productof two m-dimensional vectors as follows:

bT c =
m∑

j=1

bjcj ,

then
‖b‖2 = bT b . (2.8)

Thus, the squared length of a vector is the inner product of the vector with itself. Here and elsewhere, vectors are
columnvectors by default, and the symbolT makes them into row vectors.
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Theorem 2.3.1

bT c = ‖b‖ ‖c‖ cos θ

whereθ is the angle betweenb andc.

Proof. The law of cosines applied to the triangle with sides‖b‖, ‖c‖, and‖b− c‖ yields

‖b− c‖2 = ‖b‖2 + ‖c‖2 − 2‖b‖ ‖c‖ cos θ

and from equation (2.8) we obtain

bT b + cT c− 2bT c = bT b + cT c− 2‖b‖ ‖c‖ cos θ .

Canceling equal terms and dividing by -2 yields the desired result. ∆

Corollary 2.3.2 Two nonzero vectorsb andc in Rm are mutually orthogonal iffbT c = 0.

Proof. Whenθ = ±π/2, the previous theorem yieldsbT c = 0. ∆

Given two vectorsb andc applied to the origin, theprojectionof b ontoc is the vector from the origin to the point
p on the line throughc that is nearest to the endpoint ofb. See figure 2.2.

p

b

c

Figure 2.2: The vector from the origin to pointp is the projection ofb ontoc. The line from the endpoint ofb to p is
orthogonal toc.

Theorem 2.3.3 The projection ofb ontoc is the vector

p = Pcb

wherePc is the following square matrix:

Pc =
ccT

cT c
.

Proof. Since by definition pointp is on the line throughc, the projection vectorp has the formp = ac, where
a is some real number. From elementary geometry, the line betweenp and the endpoint ofb is shortest when it is
orthogonal toc:

cT (b− ac) = 0
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which yields

a =
cT b
cT c

so that

p = ac = ca =
ccT

cT c
b

as advertised. ∆

2.4 Orthogonal Subspaces and the Rank of a Matrix

Linear transformations map spaces into spaces. It is important to understand exactly what is being mapped into what
in order to determine whether a linear system has solutions, and if so how many. This section introduces the notion of
orthogonality between spaces, defines the null space and range of a matrix, and its rank. With these tools, we will be
able to characterize the solutions to a linear system in section 2.5. In the process, we also introduce a useful procedure
(Gram-Schmidt) for orthonormalizing a set of linearly independent vectors.

Two vector spacesA andB are said to beorthogonalto one another when every vector inA is orthogonal to every
vector inB. If vector spaceA is a subspace ofRm for somem, then theorthogonal complementof A is the set of all
vectors inRm that are orthogonal to all the vectors inA.

Notice that complement and orthogonal complement are very different notions. For instance, the complement of
thexy plane inR3 is all of R3 except thexy plane, while the orthogonal complement of thexy plane is thez axis.

Theorem 2.4.1 Any basisa1, . . . , an for a subspaceA of Rm can be extended into a basis forRm by addingm − n
vectorsan+1, . . . , am.

Proof. If n = m we are done. Ifn < m, the given basis cannot generate all ofRm, so there must be a vector, call
it an+1, that is linearly independent ofa1, . . . , an. This argument can be repeated until the basis spans all ofRm, that
is, until m = n. ∆

Theorem 2.4.2 (Gram-Schmidt) Givenn vectorsa1, . . . , an, the following construction

r = 0
for j = 1 to n

a′j = aj −
∑r

l=1(q
T
l aj)ql

if ‖a′j‖ 6= 0
r = r + 1

qr = a′j
‖a′

j
‖

end
end

yields a set of orthonormal3 vectorsq1 . . . , qr that span the same space asa1, . . . , an.

Proof. We first prove by induction onr that the vectorsqr are mutually orthonormal. Ifr = 1, there is little to
prove. The normalization in the above procedure ensures thatq1 has unit norm. Let us now assume that the procedure

3Orthonormal means orthogonal and with unit norm.
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above has been performed a numberj− 1 of times sufficient to findr− 1 vectorsq1, . . . , qr−1, and that these vectors
are orthonormal (the inductive assumption). Then for anyi < r we have

qT
i a′j = qT

i aj −
r−1∑

l=1

(qT
l aj)qT

i ql = 0

because the termqT
i aj cancels thei-th term(qT

i aj)qT
i qi of the sum (remember thatqT

i qi = 1), and the inner products
qT

i ql are zero by the inductive assumption. Because of the explicit normalization stepqr = a′j/‖a′j‖, the vectorqr, if
computed, has unit norm, and becauseqT

i a′j = 0, it follwos thatqr is orthogonal to all its predecessors,qT
i qr = 0 for

i = 1, . . . , r − 1.
Finally, we notice that the vectorsqj span the same space as theajs, because the former are linear combinations

of the latter, are orthonormal (and therefore independent), and equal in number to the number of linearly independent
vectors ina1, . . . , an. ∆

Theorem 2.4.3 If A is a subspace ofRm andA⊥ is the orthogonal complement ofA in Rm, then

dim(A) + dim(A⊥) = m .

Proof. Let a1, . . . , an be a basis forA. Extend this basis to a basisa1, . . . , am for Rm (theorem 2.4.1). Orthonor-
malize this basis by the Gram-Schmidt procedure (theorem 2.4.2) to obtainq1, . . . , qm. By construction,q1, . . . , qn

spanA. Because the new basis is orthonormal, all vectors generated byqn+1, . . . , qm are orthogonal to all vectors
generated byq1, . . . , qn, so there is a space of dimension at leastm − n that is orthogonal toA. On the other hand,
the dimension of this orthogonal space cannot exceedm− n, because otherwise we would have more thanm vectors
in a basis forRm. Thus, the dimension of the orthogonal spaceA⊥ is exactlym− n, as promised. ∆

We can now start to talk about matrices in terms of the subspaces associated with them. Thenull spacenull(A) of
anm × n matrix A is the space of alln-dimensional vectors that are orthogonal to the rows ofA. Therangeof A is
the space of allm-dimensional vectors that are generated by the columns ofA. Thus,x ∈ null(A) iff Ax = 0, and
b ∈ range(A) iff Ax = b for somex.

From theorem 2.4.3, if null(A) has dimensionh, then the space generated by the rows ofA has dimensionr =
n− h, that is,A hasn− h linearly independent rows. It is not obvious that the space generated by thecolumnsof A
has also dimensionr = n− h. This is the point of the following theorem.

Theorem 2.4.4 The numberr of linearly independent columns of anym × n matrix A is equal to the number of its
independent rows, and

r = n− h

whereh = dim(null(A)).

Proof. We have already proven that the number of independent rows isn − h. Now we show that the number of
independent columns is alson− h, by constructing a basis for range(A).

Let v1, . . . , vh be a basis for null(A), and extend this basis (theorem 2.4.1) into a basisv1, . . . , vn for Rn. Then
we can show that then− h vectorsAvh+1, . . . , Avn are a basis for the range ofA.

First, thesen − h vectors generate the range ofA. In fact, given an arbitrary vectorb ∈ range(A), there must be
a linear combination of the columns ofA that is equal tob. In symbols, there is ann-tuplex such thatAx = b. The
n-tuplex itself, being an element ofRn, must be some linear combination ofv1, . . . , vn, our basis forRn:

x =
n∑

j=1

cjvj .
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Thus,

b = Ax = A

n∑

j=1

cjvj =
n∑

j=1

cjAvj =
n∑

j=h+1

cjAvj

sincev1, . . . , vh span null(A), so thatAvj = 0 for j = 1, . . . , h. This proves that then− h vectorsAvh+1, . . . , Avn

generate range(A).
Second, we prove that then − h vectorsAvh+1, . . . , Avn are linearly independent. Suppose,per absurdum, that

they are not. Then there exist numbersxh+1, . . . , xn, not all zero, such that

n∑

j=h+1

xjAvj = 0

so that

A

n∑

j=h+1

xjvj = 0 .

But then the vector
∑n

j=h+1 xjvj is in the null space ofA. Since the vectorsv1, . . . , vh are a basis for null(A), there
must exist coefficientsx1, . . . , xh such that

n∑

j=h+1

xjvj =
h∑

j=1

xjvj ,

in conflict with the assumption that the vectorsv1, . . . , vn are linearly independent. ∆

Thanks to this theorem, we can define therankof A to be equivalently the number of linearly independent columns
or of linearly independent rows ofA:

rank(A) = dim(range(A)) = n− dim(null(A)) .

2.5 The Solutions of a Linear System

Thanks to the results of the previous sections, we now have a complete picture of the four spaces associated with an
m× n matrixA of rankr and null-space dimensionh:

range(A); dimensionr = rank(A)
null(A); dimensionh
range(A)⊥; dimensionm− r
null(A)⊥; dimensionr = n− h .

The space range(A)⊥ is called theleft nullspaceof the matrix, and null(A)⊥ is called therowspaceof A. A
frequently used synonym for “range” iscolumn space. It should be obvious from the meaning of these spaces that

null(A)⊥ = range(AT )
range(A)⊥ = null(AT )

whereAT is thetransposeof A, defined as the matrix obtained by exchanging the rows ofA with its columns.

Theorem 2.5.1 The matrixA transforms a vectorx in its null space into the zero vector, and an arbitrary vectorx
into a vector inrange(A).
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This allows characterizing the set of solutions to linear system as follows. Let

Ax = b

be anm× n system (m can be less than, equal to, or greater thann). Also, let

r = rank(A)

be the number of linearly independent rows or columns ofA. Then,

b 6∈ range(A) ⇒ no solutions
b ∈ range(A) ⇒ ∞n−r solutions

with the convention that∞0 = 1. Here,∞k is the cardinality of ak-dimensional vector space.
In the first case above, there can be no linear combination of the columns (nox vector) that givesb, and the system

is said to beincompatible. In the second,compatiblecase, three possibilities occur, depending on the relative sizes of
r,m, n:

• Whenr = n = m, the system isinvertible. This means that there is exactly onex that satisfies the system, since
the columns ofA span all ofRn. Notice that invertibility depends only onA, not onb.

• Whenr = n andm > n, the system isredundant. There are more equations than unknowns, but sinceb is in
the range ofA there is a linear combination of the columns (a vectorx) that producesb. In other words, the
equations are compatible, and exactly one solution exists.4

• Whenr < n the system isunderdetermined. This means that the null space is nontrivial (i.e., it has dimension
h > 0), and there is a space of dimensionh = n− r of vectorsx such thatAx = 0. Sinceb is assumed to be in
the range ofA, there are solutionsx to Ax = b, but then for anyy ∈ null(A) alsox + y is a solution:

Ax = b , Ay = 0 ⇒ A(x + y) = b

and this generates the∞h = ∞n−r solutions mentioned above.

Notice that ifr = n thenn cannot possibly exceedm, so the first two cases exhaust the possibilities forr = n. Also,
r cannot exceed eitherm or n. All the cases are summarized in figure 2.3.

Of course, listing all possibilities does not provide an operational method for determining the type of linear system
for a given pairA, b. Gaussian elimination, and particularly its version calledreduction to echelon formis such a
method, and is summarized in the next section.

2.6 Gaussian Elimination

Gaussian elimination is an important technique for solving linear systems. In addition to always yielding a solution,
no matter whether the system is invertible or not, it also allows determining the rank of a matrix.

Other solution techniques exist for linear systems. Most notably, iterative methods solve systems in a time that
depends on the accuracy required, while direct methods, like Gaussian elimination, are done in a finite amount of
time that can be bounded given only the size of a matrix. Which method to use depends on the size and structure
(e.g., sparsity) of the matrix, whether more information is required about the matrix of the system, and on numerical
considerations. More on this in chapter 3.

Consider them× n system
Ax = b (2.9)

4Notice that the technical meaning of “redundant” has a stronger meaning than “with more equations than unknowns.” The caser < n < m is
possible, has more equations (m) than unknowns (n), admits a solution ifb ∈ range(A), but is called “underdetermined” because there are fewer
(r) independent equations than there are unknowns (see next item). Thus, “redundant” means “with exactly one solution and with more equations
than unknowns.”
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yes no

yes no

yes no

underdetermined

redundantinvertible

b in range(A)

r = n

m = n

incompatible

Figure 2.3: Types of linear systems.

which can be square or rectangular, invertible, incompatible, redundant, or underdetermined. In short, there are no
restrictions on the system. Gaussian elimination replaces the rows of this system by linear combinations of the rows
themselves untilA is changed into a matrixU that is in the so-calledechelon form. This means that

• Nonzero rows precede rows with all zeros. The first nonzero entry, if any, of a row, is called apivot.

• Below each pivot is a column of zeros.

• Each pivot lies to the right of the pivot in the row above.

The same operations are applied to the rows ofA and to those ofb, which is transformed to a new vectorc, so equality
is preserved and solving the final system yields the same solution as solving the original one.

Once the system is transformed into echelon form, we compute the solutionx by backsubstitution, that is, by
solving the transformed system

Ux = c .

2.6.1 Reduction to Echelon Form

The matrixA is reduced to echelon form by a process inm − 1 steps. The first step is applied toU (1) = A and
c(1) = b. Thek-th step is applied to rowsk, . . . , m of U (k) andc(k) and producesU (k+1) andc(k+1). The last step
producesU (m) = U andc(m) = c. Initially, the “pivot column index”p is set to one. Here is stepk, whereuij denotes
entryi, j of U (k):

Skip no-pivot columns If uip is zero for everyi = k, . . . , m, then incrementp by 1. If p exceedsn stop.5

Row exchangeNow p ≤ n anduip is nonzero for somek ≤ i ≤ m. Let l be one such value ofi6. If l 6= k, exchange
rowsl andk of U (k) and ofc(k).

Triangularization The new entryukp is nonzero, and is called thepivot. For i = k + 1, . . . , m, subtract rowk of
U (k) multiplied byuip/ukp from row i of U (k), and subtract entryk of c(k) multiplied byuip/ukp from entryi
of c(k). This zeros all the entries in the column below the pivot, and preserves the equality of left- and right-hand
side.

When this process is finished,U is in echelon form. In particular, if the matrix is square and if all columns have a
pivot, thenU is upper-triangular.

5“Stop” means that the entire algorithm is finished.
6Different ways of selectingl here lead to different numerical properties of the algorithm. Selecting the largest entry in the column leads to

better round-off properties.
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2.6.2 Backsubstitution

A system
Ux = c (2.10)

in echelon form is easily solved forx. To see this, we first solve the system symbolically, leaving undetermined vari-
ables specified by their name, and then transform this solution procedure into one that can be more readily implemented
numerically.

Let r be the index of the last nonzero row ofU . Since this is the number of independent rows ofU , r is the rank
of U . It is also the rank ofA, becauseA andU admit exactly the same solutions and are equal in size. Ifr < m, the
lastm− r equations yield a subsystem of the following form:




0
...
0


 =




cr+1

...
cm


 .

Let us call this theresidual subsystem. If on the other handr = m (obviouslyr cannot exceedm), there is no residual
subsystem.

If there is a residual system (i.e., r < m) and some ofcr+1, . . . , cm are nonzero, then the equations corresponding
to these nonzero entries are incompatible, because they are of the form0 = ci with ci 6= 0. Since no vectorx can
satisfy these equations, the linear system admits no solutions: it is incompatible.

Let us now assume that either there is no residual system, or if there is one it is compatible, that is,cr+1 = . . . =
cm = 0. Then, solutions exist, and they can be determined bybacksubstitution, that is, by solving the equations
starting from the last one and replacing the result in the equations higher up.

Backsubstitutions works as follows. First, remove the residual system, if any. We are left with anr× n system. In
this system, call the variables corresponding to ther columns with pivots thebasic variables, and call the othern− r
thefree variables. Say that the pivot columns arej1, . . . , jr. Thensymbolic backsubstitutionconsists of the following
sequence:

for i = r downto1

xji =
1

uiji


ci −

n∑

l=ji+1

uilxl




end

This is called symbolic backsubstitution because no numerical values are assigned to free variables. Whenever they
appear in the expressions for the basic variables, free variables are specified by name rather than by value. The final
result is a solution with as many free parameters as there are free variables. Since any value given to the free variables
leaves the equality of system (2.10) satisfied, the presence of free variables leads to an infinity of solutions.

When solving a system in echelon form numerically, however, it is inconvenient to carry around nonnumeric
symbol names (the free variables). Here is an equivalent solution procedure that makes this unnecessary. The solution
obtained by backsubstitution is an affine function7 of the free variables, and can therefore be written in the form

x = v0 + xj1v1 + . . . + xjn−r vn−r (2.11)

where thexji are the free variables. The vectorv0 is the solution when all free variables are zero, and can therefore be
obtained by replacing each free variable by zero during backsubstitution. Similarly, the vectorvi for i = 1, . . . , n− r
can be obtained by solving the homogeneous system

Ux = 0

with xji = 1 and all other free variables equal to zero. In conclusion, the general solution can be obtained by running
backsubstitutionn− r +1 times, once for the nonhomogeneous system, andn− r times for the homogeneous system,
with suitable values of the free variables. This yields the solution in the form (2.11).

Notice that the vectorsv1, . . . , vn−r form a basis for the null space ofU , and therefore ofA.
7An affine function is a linear function plus a constant.
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2.6.3 An Example

An example will clarify both the reduction to echelon form and backsubstitution. Consider the system

Ax = b

where

U (1) = A =




1 3 3 2
2 6 9 5
−1 −3 3 0


 , c(1) = b =




1
5
5


 .

Reduction to echelon form transformsA andb as follows. In the first step (k = 1), there are no no-pivot columns,
so the pivot column indexp stays at1. Throughout this example, we choose a trivial pivot selection rule: we pick the
first nonzero entry at or below rowk in the pivot column. Fork = 1, this means thatu(1)

11 = a11 = 1 is the pivot. In
other words, no row exchange is necessary.8 The triangularization step subtracts row 1 multiplied by 2/1 from row 2,
and subtracts row 1 multiplied by -1/1 from row 3. When applied to bothU (1) andc(1) this yields

U (2) =




1 3 3 2
0 0 3 1
0 0 6 2


 , c(2) =




1
3
6


 .

Notice that now (k = 2) the entriesu(2)
ip are zero fori = 2, 3, for bothp = 1 andp = 2, sop is set to 3: the second

pivot column is column 3, andu(2)
23 is nonzero, so no row exchange is necessary. In the triangularization step, row 2

multiplied by 6/3 is subtracted from row 3 for bothU (2) andc(2) to yield

U = U (3) =




1 3 3 2
0 0 3 1
0 0 0 0


 , c = c(3) =




1
3
0


 .

There is one zero row in the left-hand side, and the rank ofU and that ofA is r = 2, the number of nonzero rows.
The residual system is0 = 0 (compatible), andr < n = 4, so the system is underdetermined, with∞n−r = ∞2

solutions.
In symbolic backsubstitution, the residual subsystem is first deleted. This yields the reduced system

[
1 3 3 2
0 0 3 1

]
x =

[
1
3

]
(2.12)

The basic variables arex1 andx3, corresponding to the columns with pivots. The other two variables,x2 and
x4, are free. Backsubstitution applied first to row 2 and then to row 1 yields the following expressions for the pivot
variables:

x3 =
1

u23
(c2 − u24x4) =

1
3
(3− x4) = 1− 1

3
x4

x1 =
1

u11
(c1 − u12x2 − u13x3 − u14x4) =

1
1
(1− 3x2 − 3x3 − 2x4)

= 1− 3x2 − (3− x4)− 2x4 = −2− 3x2 − x4

so the general solution is

x =




−2− 3x2 − x4

x2

1− 1
3x4

x4


 =




−2
0
1
0


 + x2




−3
1
0
0


 + x4




−1
0
− 1

3
1


 .

8Selecting the largest entry in the column at or below rowk is a frequent choice, and this would have caused rows 1 and 2 to be switched.
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This same solution can be found by the numerical backsubstitution method as follows. Solving the reduced system
(2.12) withx2 = x4 = 0 by numerical backsubstitution yields

x3 =
1
3
(3− 1 · 0) = 1

x1 =
1
1
(1− 3 · 0− 3 · 1− 2 · 0) = −2

so that

v0 =




−2
0
1
0


 .

Thenv1 is found by solving the nonzero part (first two rows) ofUx = 0 with x2 = 1 andx4 = 0 to obtain

x3 =
1
3
(−1 · 0) = 0

x1 =
1
1
(−3 · 1− 3 · 0− 2 · 0) = −3

so that

v1 =




−3
1
0
0


 .

Finally, solving the nonzero part ofUx = 0 with x2 = 0 andx4 = 1 leads to

x3 =
1
3
(−1 · 1) = −1

3

x1 =
1
1
(−3 · 0− 3 ·

(
−1

3

)
− 2 · 1) = −1

so that

v2 =




−1
0
− 1

3
1




and

x = v0 + x2v1 + x4v2 =




−2
0
1
0


 + x2




−3
1
0
0


 + x4




−1
0
− 1

3
1




just as before.

As mentioned at the beginning of this section, Gaussian elimination is adirectmethod, in the sense that the answer
can be found in a number of steps that depends only on the size of the matrixA. In the next chapter, we study a different



2.6. GAUSSIAN ELIMINATION 21

method, based on the so-called the Singular Value Decomposition (SVD). This is aniterativemethod, meaning that an
exact solution usually requires an infinite number of steps, and the number of steps necessary to find an approximate
solution depends on the desired number of correct digits.

This state of affairs would seem to favor Gaussian elimination over the SVD. However, the latter yields a much
more complete answer, since it computes bases for all the four spaces mentioned above, as well as a set of quantities,
called thesingular values, which provide great insight into the behavior of the linear transformation represented by
the matrixA. Singular values also allow defining a notion ofapproximate rankwhich is very useful in a large number
of applications. It also allows finding approximate solutions when the linear system in question is incompatible. In
addition, for reasons that will become apparent in the next chapter, the computation of the SVD is numerically well
behaved, much more so than Gaussian elimination. Finally, very efficient algorithms for the SVD exist. For instance,
on a regular workstation, one can compute several thousand SVDs of5 × 5 matrices in one second. More generally,
the number of floating point operations necessary to compute the SVD of anm× n matrix isamn2 + bn3 wherea, b
are small numbers that depend on the details of the algorithm.
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Chapter 3

The Singular Value Decomposition

In section 2, we saw that a matrix transforms vectors in its domain into vectors in its range (column space), and vectors
in its null space into the zero vector. No nonzero vector is mapped into the left null space, that is, into the orthogonal
complement of the range. In this section, we make this statement more specific by showing howunit vectors1 in the
rowspace are transformed by matrices. This describes the action that a matrix has on themagnitudesof vectors as
well. To this end, we first need to introduce the notion of orthogonal matrices, and interpret them geometrically as
transformations between systems of orthonormal coordinates. We do this in section 3.1. Then, in section 3.2, we use
these new concepts to introduce the all-important concept of the Singular Value Decomposition (SVD). The chapter
concludes with some basic applications and examples.

3.1 Orthogonal Matrices

LetS be ann-dimensional subspace ofRm (so that we necessarily haven ≤ m), and letv1, . . . , vn be an orthonormal
basis forS. Consider a pointP in S. If the coordinates ofP in Rm are collected in anm-dimensional vector

p =




p1

...
pm


 ,

and sinceP is in S, it must be possible to writep as a linear combination of thevjs. In other words, there must exist
coefficients

q =




q1

...
qn




such that
p = q1v1 + . . . + qnvn = V q

where
V =

[
v1 · · · vn

]

is anm× n matrix that collects the basis forS as its columns. Then for anyi = 1, . . . , n we have

vT
i p = vT

i

n∑

j=1

qjvj =
n∑

j=1

qjvT
i vj = qi ,

since thevj are orthonormal. This is important, and may need emphasis:

1Vectors with unit norm.

23
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If

p =
n∑

j=1

qjvj

and the vectors of the basisv1, . . . , vn are orthonormal, then the coefficientsqj are the signed mag-
nitudes of the projections ofp onto the basis vectors:

qj = vT
j p . (3.1)

In matrix form,
q = V T p . (3.2)

Also, we can collect then2 equations

vT
i vj =

{
1 if i = j
0 otherwise

into the following matrix equation:
V T V = I (3.3)

whereI is then× n identity matrix. A matrixV that satisfies equation (3.3) is said to beorthogonal. Thus, a matrix
is orthogonal if its columns are orthonormal. Since theleft inverseof a matrixV is defined as the matrixL such that

LV = I , (3.4)

comparison with equation (3.3) shows that the left inverse of an orthogonal matrixV exists, and is equal to the
transpose ofV .

Of course, this argument requiresV to be full rank, so that the solutionL to equation (3.4) is unique. However,V
is certainly full rank, because it is made of orthonormal columns.

Notice thatV R = I cannot possibly have a solution whenm > n, because them × m identity matrix hasm
linearly independent2 columns, while the columns ofV R are linear combinations of then columns ofV , soV R can
have at mostn linearly independent columns.

Of course, this result is still valid whenV is m×m and has orthonormal columns, since equation (3.3) still holds.
However, for square, full-rank matrices (r = m = n), the distinction between left and right inverse vanishes. In fact,
suppose that there exist matricesL andR such thatLV = I andV R = I. ThenL = L(V R) = (LV )R = R, so the
left and the right inverse are the same. Thus, for square orthogonal matrices,V T is both the left and the right inverse:

V T V = V V T = I ,

andV T is then simply said to be theinverseof V :

V T = V −1 .

Since the matrixV V T contains the inner products between therows of V (just asV T V is formed by the inner
products of itscolumns), the argument above shows that the rows of asquareorthogonal matrix are orthonormal as
well. We can summarize this discussion as follows:

Theorem 3.1.1 The left inverse of an orthogonalm× n matrixV with m ≥ n exists and is equal to the transpose of
V :

V T V = I .

In particular, if m = n, the matrixV −1 = V T is also the right inverse ofV :

V square ⇒ V −1V = V T V = V V −1 = V V T = I .

2Nay, orthonormal.
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Sometimes, whenm = n, the geometric interpretation of equation (3.2) causes confusion, because two interpreta-
tions of it are possible. In the interpretation given above, the pointP remains the same, and the underlying reference
frame is changed from the elementary vectorsej (that is, from the columns ofI) to the vectorsvj (that is, to the
columns ofV ). Alternatively, equation (3.2) can be seen as a transformation, in a fixed reference system, of pointP
with coordinatesp into a different pointQ with coordinatesq. This, however, is relativity, and should not be surpris-
ing: If you spin clockwise on your feet, or if you stand still and the whole universe spins counterclockwise around
you, the result is the same.3

Consistently with either of these geometric interpretations, we have the following result:

Theorem 3.1.2 The norm of a vectorx is not changed by multiplication by an orthogonal matrixV :

‖V x‖ = ‖x‖ .

Proof.
‖V x‖2 = xT V T V x = xT x = ‖x‖2 .

∆

We conclude this section with an obvious but useful consequence of orthogonality. In section 2.3 we defined the
projectionp of a vectorb onto another vectorc as the point on the line throughc that is closest tob. This notion of
projection can be extended from lines to vector spaces by the following definition: Theprojectionp of a pointb ∈ Rn

onto a subspaceC is the point inC that is closest tob.
Also, for unit vectorsc, the projection matrix isccT (theorem 2.3.3), and the vectorb − p is orthogonal toc. An

analogous result holds for subspace projection, as the following theorem shows.

Theorem 3.1.3 LetU be an orthogonal matrix. Then the matrixUUT projects any vectorb ontorange(U). Further-
more, the difference vector betweenb and its projectionp ontorange(U) is orthogonal torange(U):

UT (b− p) = 0 .

Proof. A point p in range(U) is a linear combination of the columns ofU :

p = Ux

wherex is the vector of coefficients (as many coefficients as there are columns inU ). The squared distance betweenb
andp is

‖b− p‖2 = (b− p)T (b− p) = bT b + pT p− 2bT p = bT b + xT UT Ux− 2bT Ux .

Because of orthogonality,UT U is the identity matrix, so

‖b− p‖2 = bT b + xT x− 2bT Ux .

The derivative of this squared distance with respect tox is the vector

2x− 2UT b
3At least geometrically. One solution may be more efficient than the other in other ways.
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Figure 3.1: The matrix in equation (3.5) maps a circle on the plane into an ellipse in space. The two small boxes are
corresponding points.

which is zero iff
x = UT b ,

that is, when
p = Ux = UUT b

as promised.
For this value ofp the difference vectorb− p is orthogonal to range(U), in the sense that

UT (b− p) = UT (b− UUT b) = UT b− UT b = 0 .

∆

3.2 The Singular Value Decomposition

In these notes, we have often used geometric intuition to introduce new concepts, and we have then translated these into
algebraic statements. This approach is successful when geometry is less cumbersome than algebra, or when geometric
intuition provides a strong guiding element. The geometric picture underlying the Singular Value Decomposition is
crisp and useful, so we will use geometric intuition again. Here is the main intuition:

An m × n matrix A of rank r maps ther-dimensional unit hypersphere in rowspace(A) into an r-
dimensional hyperellipse in range(A).

This statement is stronger than saying thatA maps rowspace(A) into range(A), because it also describes what
happens to themagnitudesof the vectors: a hypersphere is stretched or compressed into a hyperellipse, which is a
quadratic hypersurface that generalizes the two-dimensional notion of ellipse to an arbitrary number of dimensions. In
three dimensions, the hyperellipse is an ellipsoid, in one dimension it is a pair of points. In all cases, the hyperellipse
in question is centered at the origin.

For instance, the rank-2 matrix

A =
1√
2



√

3
√

3
−3 3
1 1


 (3.5)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 3.1 shows the map

b = Ax .
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Two diametrically opposite points on the unit circle are mapped into the two endpoints of the major axis of the
ellipse, and two other diametrically opposite points on the unit circle are mapped into the two endpoints of the minor
axis of the ellipse. The lines through these two pairs of points on the unit circle are always orthogonal. This result can
be generalized to anym× n matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cumbersome. Instead, we
will prove it algebraically by first introducing the existence of the SVD and then using the latter to prove that matrices
map hyperspheres into hyperellipses.

Theorem 3.2.1 If A is a realm× n matrix then there exist orthogonal matrices

U =
[

u1 · · · um

] ∈ Rm×m

V =
[

v1 · · · vn

] ∈ Rn×n

such that
UT AV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

wherep = min(m,n) andσ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

Proof. Let x andy be unit vectors inRn andRm, respectively, and consider the bilinear form

z = yT Ax .

The set
S = {x, y | x ∈ Rn, y ∈ Rm, ‖x‖ = ‖y‖ = 1}

is compact, so that the scalar functionz(x, y) must achieve a maximum value onS, possibly at more than one point4.
Let u1, v1 be two unit vectors inRm andRn respectively where this maximum is achieved, and letσ1 be the corre-
sponding value ofz:

max
‖x‖=‖y‖=1

yT Ax = uT
1 Av1 = σ1 .

It is easy to see thatu1 is parallel to the vectorAv1. If this were not the case, their inner productuT
1 Av1 could

be increased by rotatingu1 towards the direction ofAv1, thereby contradicting the fact thatuT
1 Av1 is a maximum.

Similarly, by noticing that
uT

1 Av1 = vT
1 AT u1

and repeating the argument above, we see thatv1 is parallel toAT u1.
By theorems 2.4.1 and 2.4.2,u1 andv1 can be extended into orthonormal bases forRm andRn, respectively.

Collect these orthonormal basis vectors into orthogonal matricesU1 andV1. Then

UT
1 AV1 = S1 =

[
σ1 0T

0 A1

]
.

In fact, the first column ofAV1 is Av1 = σ1u1, so the first entry ofUT
1 AV1 is uT

1 σ1u1 = σ1, and its other entries
areuT

j Av1 = 0 becauseAv1 is parallel tou1 and therefore orthogonal, by construction, tou2, . . . , um. A similar
argument shows that the entries after the first in the first row ofS1 are zero: the row vectoruT

1 A is parallel tovT
1 , and

therefore orthogonal tov2, . . . , vn, so thatuT
1 Av2 = . . . = uT

1 Avn = 0.
The matrixA1 has one fewer row and column thanA. We can repeat the same construction onA1 and write

UT
2 A1V2 = S2 =

[
σ2 0T

0 A2

]

4Actually, at least at two points: ifuT
1 Av1 is a maximum, so is(−u1)T A(−v1).
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so that [
1 0T

0 UT
2

]
UT

1 AV1

[
1 0T

0 V2

]
=




σ1 0 0T

0 σ2 0T

0 0 A2


 .

This procedure can be repeated untilAk vanishes (zero rows or zero columns) to obtain

UT AV = Σ

whereUT andV are orthogonal matrices obtained by multiplying together all the orthogonal matrices used in the
procedure, and

Σ = diag(σ1, . . . , σp) .

Since matricesU andV are orthogonal, we can premultiply the matrix product in the theorem byU and postmultiply
it by V T to obtain

A = UΣV T ,

which is the desired result.
It only remains to show that the elements on the diagonal ofΣ are nonnegative and arranged in nonincreasing

order. To see thatσ1 ≥ . . . ≥ σp (wherep = min(m,n)), we can observe that the successive maximization problems
that yieldσ1, . . . , σp are performed on a sequence of sets each of which contains the next. To show this, we just need
to show thatσ2 ≤ σ1, and induction will do the rest. We have

σ2 = max
‖x̂‖=‖ŷ‖=1

ŷT A1x̂ = max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
S1

[
0
x̂

]

= max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
UT

1 AV1

[
0
x̂

]
= max

‖x‖ = ‖y‖ = 1
xT v1 = yT u1 = 0

yT Ax ≤ σ1 .

To explain the last equality above, consider the vectors

x = V1

[
0
x̂

]
and y = U1

[
0
ŷ

]
.

The vectorx is equal to the unit vector[0 x̂]T transformed by the orthogonal matrixV1, and is therefore itself a unit
vector. In addition, it is a linear combination ofv2, . . . , vn, and is therefore orthogonal tov1. A similar argument
shows thaty is a unit vector orthogonal tou1. Becausex andy thus defined belong to subsets (actually sub-spheres)
of the unit spheres inRn andRm, we conclude thatσ2 ≤ σ1.

Theσi are nonnegative because all these maximizations are performed on unit hyper-spheres. Theσis are maxima
of the functionz(x, y) which always assumes both positive and negative values on any hyper-sphere: Ifz(x, y) is
negative, thenz(−x, y) is positive, and ifx is on a hyper-sphere, so is−x. ∆

We can now review the geometric picture in figure 3.1 in light of the singular value decomposition. In the process,
we introduce some nomenclature for the three matrices in the SVD. Consider the map in figure 3.1, represented by
equation (3.5), and imagine transforming pointx (the small box atx on the unit circle) into its corresponding point
b = Ax (the small box on the ellipse). This transformation can be achieved in three steps (see figure 3.2):

1. Write x in the frame of reference of the two vectorsv1, v2 on the unit circle that map into the major axes of the
ellipse. There are a few ways to do this, because axis endpoints come in pairs. Just pick one way, but order
v1, v2 so they map into the major and the minor axis, in this order. Let us callv1, v2 the two right singular
vectorsof A. The corresponding axis unit vectorsu1, u2 on the ellipse are calledleft singular vectors. If we
define

V =
[

v1 v2

]
,
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Figure 3.2: Decomposition of the mapping in figure 3.1.

the new coordinatesξ of x become

ξ = V T x

becauseV is orthogonal.

2. Transformξ into its image on a “straight” version of the final ellipse. “Straight” here means that the axes of the
ellipse are aligned with they1, y2 axes. Otherwise, the “straight” ellipse has the same shape as the ellipse in
figure 3.1. If the lengths of the half-axes of the ellipse areσ1, σ2 (major axis first), the transformed vectorη has
coordinates

η = Σξ

where

Σ =




σ1 0
0 σ2

0 0




is a diagonal matrix. The real, nonnegative numbersσ1, σ2 are called thesingular valuesof A.

3. Rotate the reference frame inRm = R3 so that the “straight” ellipse becomes the ellipse in figure 3.1. This
rotation bringsη along, and maps it tob. The components ofη are the signed magnitudes of the projections of
b along the unit vectorsu1, u2, u3 that identify the axes of the ellipse and the normal to the plane of the ellipse,
so

b = Uη

where the orthogonal matrix

U =
[

u1 u2 u3

]

collects the left singular vectors ofA.
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We can concatenate these three transformations to obtain

b = UΣV T x

or
A = UΣV T

since this construction works for any pointx on the unit circle. This is the SVD ofA.
The singular value decomposition is “almost unique”. There are two sources of ambiguity. The first is in the

orientation of the singular vectors. One can flip any right singular vector, provided that the corresponding left singular
vector is flipped as well, and still obtain a valid SVD. Singular vectors must be flipped in pairs (a left vector and its
corresponding right vector) because the singular values are required to be nonnegative. This is a trivial ambiguity. If
desired, it can be removed by imposing, for instance, that the first nonzero entry of every left singular value be positive.

The second source of ambiguity is deeper. If the matrixA maps a hypersphere into another hypersphere, the axes
of the latter are not defined. For instance, the identity matrix has an infinity of SVDs, all of the form

I = UIUT

whereU is any orthogonal matrix of suitable size. More generally, whenever two or more singular values coincide,
the subspaces identified by the corresponding left and right singular vectors are unique, but any orthonormal basis can
be chosen within, say, the right subspace and yield, together with the corresponding left singular vectors, a valid SVD.
Except for these ambiguities, the SVD is unique.

Even in the general case, the singular values of a matrixA are the lengths of the semi-axes of the hyperellipseE
defined by

E = {Ax : ‖x‖ = 1} .

The SVD reveals a great deal about the structure of a matrix. If we definer by

σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0 ,

that is, ifσr is the smallest nonzero singular value ofA, then

rank(A) = r

null(A) = span{vr+1, . . . , vn}
range(A) = span{u1, . . . , ur} .

The sizes of the matrices in the SVD are as follows:U is m ×m, Σ is m × n, andV is n × n. Thus,Σ has the
same shape and size asA, while U andV are square. However, ifm > n, the bottom(m− n)× n block ofΣ is zero,
so that the lastm − n columns ofU are multiplied by zero. Similarly, ifm < n, the rightmostm × (n −m) block
of Σ is zero, and this multiplies the lastn−m rows ofV . This suggests a “small,” equivalent version of the SVD. If
p = min(m, n), we can defineUp = U(:, 1 : p), Σp = Σ(1 : p, 1 : p), andVp = V (:, 1 : p), and write

A = UpΣpV
T
p

whereUp is m× p, Σp is p× p, andVp is n× p.
Moreover, ifp− r singular values are zero, we can letUr = U(:, 1 : r), Σr = Σ(1 : r, 1 : r), andVr = V (:, 1 : r),

then we have

A = UrΣrV
T
r =

r∑

i=1

σiuivT
i ,

which is an even smaller,minimal, SVD.
Finally, both the 2-norm and the Frobenius norm

‖A‖F =

√√√√
m∑

i=1

n∑

j=1

|aij |2
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and

‖A‖2 = sup
x6=0

‖Ax‖
‖x‖

are neatly characterized in terms of the SVD:

‖A‖2F = σ2
1 + . . . + σ2

p

‖A‖2 = σ1 .

In the next few sections we introduce fundamental results and applications that testify to the importance of the
SVD.

3.3 The Pseudoinverse

One of the most important applications of the SVD is the solution of linear systems in the least squares sense. A linear
system of the form

Ax = b (3.6)

arising from a real-life application may or may not admit a solution, that is, a vectorx that satisfies this equation exactly.
Often more measurements are available than strictly necessary, because measurements are unreliable. This leads to
more equations than unknowns (the numberm of rows inA is greater than the numbern of columns), and equations
are often mutually incompatible because they come from inexact measurements (incompatible linear systems were
defined in chapter 2). Even whenm ≤ n the equations can be incompatible, because of errors in the measurements
that produce the entries ofA. In these cases, it makes more sense to find a vectorx that minimizes the norm

‖Ax− b‖

of theresidualvector
r = Ax− b .

where the double bars henceforth refer to the Euclidean norm. Thus,x cannot exactly satisfy any of them equations
in the system, but it tries to satisfy all of them as closely as possible, as measured by the sum of the squares of the
discrepancies between left- and right-hand sides of the equations.

In other circumstances, not enough measurements are available. Then, the linear system (3.6) is underdetermined,
in the sense that it has fewer independent equations than unknowns (its rankr is less thann, see again chapter 2).

Incompatibility and underdeterminacy can occur together: the system admits no solution, and the least-squares
solution is not unique. For instance, the system

x1 + x2 = 1
x1 + x2 = 3

x3 = 2

has three unknowns, but rank 2, and its first two equations are incompatible:x1 + x2 cannot be equal to both 1 and
3. A least-squares solution turns out to bex = [1 1 2]T with residualr = Ax − b = [1 − 1 0], which has norm

√
2

(admittedly, this is a rather high residual, but this is the best we can do for this problem, in the least-squares sense).
However, any other vector of the form

x′ =




1
1
2


 + α



−1
1
0




is as good asx. For instance,x′ = [0 2 2], obtained forα = 1, yields exactly the same residual asx (check this).
In summary, an exact solution to the system (3.6) may not exist, or may not be unique, as we learned in chapter 2.

An approximate solution, in the least-squares sense, always exists, but may fail to be unique.
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If there are several least-squares solutions, all equally good (or bad), then one of them turns out to be shorter than
all the others, that is, its norm‖x‖ is smallest. One can therefore redefine what it means to “solve” a linear system so
that there is always exactly one solution. This minimum norm solution is the subject of the following theorem, which
both proves uniqueness and provides a recipe for the computation of the solution.

Theorem 3.3.1 The minimum-norm least squares solution to a linear systemAx = b, that is, the shortest vectorx
that achieves the

min
x
‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UT b (3.7)

where

Σ† =




1/σ1 0 · · · 0
. ..

1/σr

...
...

0
. ..

0 0 · · · 0




is ann×m diagonal matrix.

The matrix
A† = V Σ†UT

is called thepseudoinverseof A.
Proof. The minimum-norm Least Squares solution to

Ax = b

is the shortest vectorx that minimizes
‖Ax− b‖

that is,
‖UΣV T x− b‖ .

This can be written as
‖U(ΣV T x− UT b)‖ (3.8)

becauseU is an orthogonal matrix,UUT = I. But orthogonal matrices do not change the norm of vectors they are
applied to (theorem 3.1.2), so that the last expression above equals

‖ΣV T x− UT b‖
or, with y = V T x andc = UT b,

‖Σy− c‖ .

In order to find the solution to this minimization problem, let us spell out the last expression. We want to minimize the
norm of the following vector:




σ1 0 · · · 0

0
. . . · · · 0

σr

... 0
...

. . .
0 0







y1

...
yr

yr+1

...
yn




−




c1

...
cr

cr+1

...
cm




.
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The lastm− r differences are of the form

0−




cr+1

...
cm




and do not depend on the unknowny. In other words, there is nothing we can do about those differences: if some or
all theci for i = r + 1, . . . , m are nonzero, we will not be able to zero these differences, and each of them contributes
a residual|ci| to the solution. In each of the firstr differences, on the other hand, the lastn − r components ofy are
multiplied by zeros, so they have no effect on the solution. Thus, there is freedom in their choice. Since we look for
the minimum-norm solution, that is, for the shortest vectorx, we also want the shortesty, becausex andy are related
by an orthogonal transformation. We therefore setyr+1 = . . . = yn = 0. In summary, the desiredy has the following
components:

yi =
ci

σi
for i = 1, . . . , r

yi = 0 for i = r + 1, . . . , n .

When written as a function of the vectorc, this is

y = Σ+c .

Notice that there is no other choice fory, which is therefore unique: minimum residual forces the choice ofy1, . . . , yr,
and minimum-norm solution forces the other entries ofy. Thus, the minimum-norm, least-squares solution to the
original system is the unique vector

x̂ = V y = V Σ+c = V Σ+UT b

as promised. The residual, that is, the norm of‖Ax − b‖ whenx is the solution vector, is the norm ofΣy − c, since
this vector is related toAx− b by an orthogonal transformation (see equation (3.8)). In conclusion, the square of the
residual is

‖Ax− b‖2 = ‖Σy− c‖2 =
m∑

i=r+1

c2
i =

m∑

i=r+1

(uT
i b)2

which is the projection of the right-hand side vectorb onto the complement of the range ofA. ∆

3.4 Least-Squares Solution of a Homogeneous Linear Systems

Theorem 3.3.1 works regardless of the value of the right-hand side vectorb. Whenb = 0, that is, when the system is
homogeneous, the solution is trivial: the minimum-norm solution to

Ax = 0 (3.9)

is
x = 0 ,

which happens to be an exact solution. Of course it is not necessarily the only one (any vector in the null space ofA
is also a solution, by definition), but it is obviously the one with the smallest norm.

Thus,x = 0 is the minimum-norm solution to any homogeneous linear system. Although correct, this solution is
not too interesting. In many applications, what is desired is anonzerovectorx that satisfies the system (3.9) as well
as possible. Without any constraints onx, we would fall back tox = 0 again. For homogeneous linear systems, the
meaning of a least-squares solution is therefore usually modified, once more, by imposing the constraint

‖x‖ = 1
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on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily admit aunique
solution. The following theorem provides a recipe for finding this solution, and shows that there is in general a whole
hypersphere of solutions.

Theorem 3.4.1 Let
A = UΣV T

be the singular value decomposition ofA. Furthermore, letvn−k+1, . . . , vn be thek columns ofV whose correspond-
ing singular values are equal to the last singular valueσn, that is, letk be the largest integer such that

σn−k+1 = . . . = σn .

Then, all vectors of the form
x = α1vn−k+1 + . . . + αkvn (3.10)

with
α2

1 + . . . + α2
k = 1 (3.11)

are unit-norm least squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .

Note: whenσn is greater than zero the most common case isk = 1, since it is very unlikely that different singular
values haveexactlythe same numerical value. WhenA is rank deficient, on the other case, it may often have more
than one singular value equal to zero. In any event, ifk = 1, then the minimum-norm solution is unique,x = vn. If
k > 1, the theorem above shows how to expressall solutions as a linear combination of the lastk columns ofV .
Proof. The reasoning is very similar to that for the previous theorem. The unit-norm Least Squares solution to

Ax = 0

is the vectorx with ‖x‖ = 1 that minimizes
‖Ax‖

that is,
‖UΣV T x‖ .

Since orthogonal matrices do not change the norm of vectors they are applied to (theorem 3.1.2), this norm is the same
as

‖ΣV T x‖
or, with y = V T x,

‖Σy‖ .

SinceV is orthogonal,‖x‖ = 1 translates to‖y‖ = 1. We thus look for the unit-norm vectory that minimizes the
norm (squared) ofΣy, that is,

σ2
1y2

1 + . . . + σ2
ny2

n .

This is obviously achieved by concentrating all the (unit) mass ofy where theσs are smallest, that is by letting

y1 = . . . = yn−k = 0. (3.12)

Fromy = V T x we obtainx = V y = y1v1 + . . . + ynvn, so that equation (3.12) is equivalent to equation (3.10) with
α1 = yn−k+1, . . . , αk = yn, and the unit-norm constraint ony yields equation (3.11). ∆

Section 3.5 shows a sample use of theorem 3.4.1.
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3.5 SVD Line Fitting

The Singular Value Decomposition of a matrix yields a simple method for fitting a line to a set of points on the plane.

3.5.1 Fitting a Line to a Set of Points

Let pi = (xi, yi)T be a set ofm ≥ 2 points on the plane, and let

ax + by − c = 0

be the equation of a line. If the lefthand side of this equation is multiplied by a nonzero constant, the line does not
change. Thus, we can assume without loss of generality that

‖n‖ = a2 + b2 = 1 , (3.13)

where the unit vectorn = (a, b)T , orthogonal to the line, is called theline normal.
The distance from the line to the origin is|c| (see figure 3.3), and the distance between the linen and a pointpi is

equal to
di = |axi + byi − c| = |pT

i n− c| . (3.14)

p
i

a

b
|c|

Figure 3.3: The distance between pointpi = (xi, yi)T and lineax + by − c = 0 is |axi + byi − c|.

The best-fit line minimizes the sum of the squared distances. Thus, if we letd = (d1, . . . , dm) and P =
(p1 . . . , pm)T , the best-fit line achieves the

min
‖n‖=1

‖d‖2 = min
‖n‖=1

‖Pn− c1‖2 . (3.15)

In equation (3.15),1 is a vector ofm ones.

3.5.2 The Best Line Fit

Since the third line parameterc does not appear in the constraint (3.13), at the minimum (3.15) we must have

∂‖d‖2
∂c

= 0 . (3.16)

If we define the centroidp of all the pointspi as

p =
1
m

PT 1 ,
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equation (3.16) yields

∂‖d‖2
∂c

=
∂

∂c

(
nT PT − c1T

)
(Pn− 1c)

=
∂

∂c

(
nT PT Pn + c21T 1− 2nT PT c1

)

= 2
(
mc− nT PT 1

)
= 0

from which we obtain

c =
1
m

nT PT 1 ,

that is,
c = pT n .

By replacing this expression into equation (3.15), we obtain

min
‖n‖=1

‖d‖2 = min
‖n‖=1

‖Pn− 1pT n‖2 = min
‖n‖=1

‖Qn‖2 ,

whereQ = P − 1pT collects thecenteredcoordinates of them points. We can solve this constrained minimization
problem by theorem 3.4.1. Equivalently, and in order to emphasize the geometric meaning of signular values and
vectors, we can recall that ifn is on a circle, the shortest vector of the formQn is obtained whenn is the right singular
vectorv2 corresponding to the smallerσ2 of the two singular values ofQ. Furthermore, sinceQv2 has normσ2, the
residue is

min
‖n‖=1

‖d‖ = σ2

and more specifically the distancesdi are given by

d = σ2u2

whereu2 is the left singular vector corresponding toσ2. In fact, whenn = v2, the SVD

Q = UΣV T =
2∑

i=1

σiuivT
i

yields

Qn = Qv2 =
2∑

i=1

σiuivT
i v2 = σ2u2

becausev1 andv2 are orthonormal vectors.
To summarize, to fit a line(a, b, c) to a set ofm pointspi collected in them × 2 matrix P = (p1 . . . , pm)T ,

proceed as follows:

1. compute the centroid of the points (1 is a vector ofm ones):

p =
1
m

PT 1

2. form the matrix of centered coordinates:
Q = P − 1pT

3. compute the SVD of Q:
Q = UΣV T
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4. the line normal is the second column of the2× 2 matrixV :

n = (a, b)T = v2 ,

5. the third coefficient of the line is
c = pT n

6. the residue of the fit is
min
‖n‖=1

‖d‖ = σ2

The followingmatlab code implements the line fitting method.

function [l, residue] = linefit(P)
% check input matrix sizes
[m n] = size(P);
if n ˜= 2, error(’matrix P must be m x 2’), end
if m < 2, error(’Need at least two points’), end
one = ones(m, 1);
% centroid of all the points
p = (P’ * one) / m;
% matrix of centered coordinates
Q = P - one * p’;
[U Sigma V] = svd(Q);
% the line normal is the second column of V
n = V(:, 2);
% assemble the three line coefficients into a column vector
l = [n ; p’ * n];
% the smallest singular value of Q
% measures the residual fitting error
residue = Sigma(2, 2);

A useful exercise is to think how this procedure, or something close to it, can be adapted to fit a set of data points
in Rm with an affine subspace of given dimensionn. An affine subspace is a linear subspace plus a point, just like an
arbitrary line is a line through the origin plus a point. Here “plus” means the following. LetL be a linear space. Then
an affine space has the form

A = p + L = {a | a = p + l andl ∈ L} .

Hint: minimizing the distance between a point and a subspace is equivalent to maximizing the norm of the projection
of the point onto the subspace. The fitting problem (including fitting a line to a set of points) can be cast either as a
maximization or a minimization problem.
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Chapter 4

Function Optimization

There are three main reasons why most problems in robotics, vision, and arguably every other science or endeavor
take on the form of optimization problems. One is that the desired goal may not be achievable, and so we try to get as
close as possible to it. The second reason is that there may be more ways to achieve the goal, and so we can choose
one by assigning a quality to all the solutions and selecting the best one. The third reason is that we may not know
how to solve the system of equationsf(x) = 0, so instead we minimize the norm‖f(x)‖, which is a scalar function of
the unknown vectorx.

We have encountered the first two situations when talking about linear systems. The case in which a linear system
admits exactly one exact solution is simple but rare. More often, the system at hand is either incompatible (some say
overconstrained) or, at the opposite end, underdetermined. In fact, some problems are both, in a sense. While these
problems admit no exact solution, they often admit a multitude of approximate solutions. In addition, many problems
lead to nonlinear equations.

Consider, for instance, the problem of Structure From Motion (SFM) in computer vision. Nonlinear equations
describe how points in the world project onto the images taken by cameras at given positions in space. Structure from
motion goes the other way around, and attempts to solve these equations: image points are given, and one wants to
determine where the points in the world and the cameras are. Because image points come from noisy measurements,
they are not exact, and the resulting system is usually incompatible. SFM is then cast as an optimization problem.
On the other hand, the exact system (the one with perfect coefficients) is often close to being underdetermined. For
instance, the images may be insufficient to recover a certain shape under a certain motion. Then, an additional criterion
must be added to define what a “good” solution is. In these cases, the noisy system admits no exact solutions, but has
many approximate ones.

The term “optimization” is meant to subsume both minimization and maximization. However, maximizing the
scalar functionf(x) is the same as minimizing−f(x), so we consider optimization and minimization to be essentially
synonyms. Usually, one is after global minima. However, global minima are hard to find, since they involve a universal
quantifier: x∗ is a global minimum off if for every otherx we havef(x) ≥ f(x∗). Global minization techniques
like simulated annealing have been proposed, but their convergence properties depend very strongly on the problem at
hand. In this chapter, we consider local minimization: we pick a starting pointx0, and we descend in the landscape of
f(x) until we cannot go down any further. The bottom of the valley is a local minimum.

Local minimization is appropriate if we know how to pick anx0 that is close tox∗. This occurs frequently in
feedback systems. In these systems, we start at a local (or even a global) minimum. The system then evolves and
escapes from the minimum. As soon as this occurs, a control signal is generated to bring the system back to the
minimum. Because of this immediate reaction, the old minimum can often be used as a starting pointx0 when looking
for the new minimum, that is, when computing the required control signal. More formally, we reach the correct
minimumx∗ as long as the initial pointx0 is in thebasin of attractionof x∗, defined as the largest neighborhood ofx∗

in whichf(x) is convex.
Good references for the discussion in this chapter areMatrix Computations, Practical Optimization, andNumerical

Recipes in C, all of which are listed with full citations in section 1.4.
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4.1 Local Minimization and Steepest Descent

Suppose that we want to find a local minimum for the scalar functionf of the vector variablex, starting from an initial
pointx0. Picking an appropriatex0 is crucial, but also very problem-dependent. We start fromx0, and we go downhill.
At every step of the way, we must make the following decisions:

• Whether to stop.

• In what direction to proceed.

• How long a step to take.

In fact, most minimization algorithms have the following structure:

k = 0
while xk is not a minimum

compute step directionpk with ‖pk‖ = 1
compute step sizeαk

xk+1 = xk + αkpk

k = k + 1
end.

Different algorithms differ in how each of these instructions is performed.
It is intuitively clear that the choice of the step sizeαk is important. Too small a step leads to slow convergence,

or even to lack of convergence altogether. Too large a step causes overshooting, that is, leaping past the solution. The
most disastrous consequence of this is that we may leave the basin of attraction, or that we oscillate back and forth
with increasing amplitudes, leading to instability. Even when oscillations decrease, they can slow down convergence
considerably.

What is less obvious is that the best direction of descent is not necessarily, and in fact is quite rarely, the direction
of steepest descent, as we now show. Consider a simple but important case,

f(x) = c + aT x +
1
2

xT Qx (4.1)

whereQ is a symmetric, positive definite matrix.Positive definitemeans that for every nonzerox the quantityxT Qx
is positive. In this case, the graph off(x)− c is a planeaT x plus a paraboloid.

Of course, iff were this simple, no descent methods would be necessary. In fact the minimum off can be found
by setting its gradient to zero:

∂f

∂x
= a + Qx = 0

so that the minimumx∗ is the solution to the linear system

Qx = −a . (4.2)

SinceQ is positive definite, it is also invertible (why?), and the solutionx∗ is unique. However, understanding the
behavior of minimization algorithms in this simple case is crucial in order to establish the convergence properties of
these algorithms for more general functions. In fact, all smooth functions can be approximated by paraboloids in a
sufficiently small neighborhood of any point.

Let us therefore assume that we minimizef as given in equation (4.1), and that at every step we choose the
direction of steepest descent. In order to simplify the mathematics, we observe that if we let

ẽ(x) =
1
2
(x− x∗)T Q(x− x∗)

then we have

ẽ(x) = f(x)− c +
1
2

x∗T Qx∗ = f(x)− f(x∗) (4.3)
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so that̃e andf differ only by a constant. In fact,

ẽ(x) =
1
2
(xT Qx + x∗T Qx∗ − 2xT Qx∗) =

1
2

xT Qx + aT x +
1
2

x∗T Qx∗ = f(x)− c +
1
2

x∗T Qx∗

and from equation (4.2) we obtain

f(x∗) = c + aT x∗ +
1
2

x∗T Qx∗ = c− x∗T Qx∗ +
1
2

x∗T Qx∗ = c− 1
2

x∗T Qx∗ .

The result (4.3),
ẽ(x) = f(x)− f(x∗) ,

is rather interesting in itself. It says that adding a linear termaT x (and a constantc) to a paraboloid1
2xT Qx merely

shifts the bottom of the paraboloid, both in position (x∗ rather than0) and value (c − 1
2x∗T Qx∗ rather than zero).

Adding the linear term does not “warp” or “tilt” the shape of the paraboloid in any way.
Sinceẽ is simpler, we consider that we are minimizingẽ rather thanf . In addition, we can let

y = x− x∗ ,

that is, we can shift the origin of the domain tox∗, and study the function

e(y) =
1
2

yT Qy

instead off or ẽ, without loss of generality. We will transform everything back tof andx once we are done. Of
course, by construction, the new minimum is at

y∗ = 0

wheree reaches a value of zero:
e(y∗) = e(0) = 0 .

However, we let our steepest descent algorithm find this minimum by starting from the initial point

y0 = x0 − x∗ .

At every iterationk, the algorithm chooses the direction of steepest descent, which is in the direction

pk = − gk

‖gk‖
opposite to the gradient ofe evaluated atyk:

gk = g(yk) =
∂e

∂y

∣∣∣∣
y=y

k

= Qyk .

We select for the algorithm the most favorable step size, that is, the one that takes us fromyk to the lowest point in
the direction ofpk. This can be found by differentiating the function

e(yk + αpk) =
1
2
(yk + αpk)T Q(yk + αpk)

with respect toα, and setting the derivative to zero to obtain the optimal stepαk. We have

∂e(yk + αpk)
∂α

= (yk + αpk)T Qpk

and setting this to zero yields

αk = − (Qyk)T pk

pT
k Qpk

= − gT
k pk

pT
k Qpk

= ‖gk‖
pT

k pk

pT
k Qpk

= ‖gk‖
gT

k gk

gT
k Qgk

. (4.4)
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Thus, the basic step of our steepest descent can be written as follows:

yk+1 = yk + ‖gk‖
gT

k gk

gT
k Qgk

pk

that is,

yk+1 = yk −
gT

k gk

gT
k Qgk

gk . (4.5)

How much closer did this step bring us to the solutiony∗ = 0? In other words, how much smaller ise(yk+1),
relative to the valuee(yk) at the previous step? The answer is, often not much, as we shall now prove. The arguments
and proofs below are adapted from D. G. Luenberger,Introduction to Linear and Nonlinear Programming, Addison-
Wesley, 1973.

From the definition ofe and from equation (4.5) we obtain

e(yk)− e(yk+1)
e(yk)

=
yT

k Qyk − yT
k+1Qyk+1

yT
k Qyk

=
yT

k Qyk −
(

yk − gT
k
g

k

gT
k

Qg
k

gk

)T

Q
(

yk − gT
k
g

k

gT
k

Qg
k

gk

)

yT
k Qyk

=
2 gT

k
g

k

gT
k

Qg
k

gT
k Qyk −

( gT
k
g

k

gT
k

Qg
k

)2

gT
k Qgk

yT
k Qyk

=
2gT

k gkgT
k Qyk − (gT

k gk)2

yT
k Qyk gT

k Qgk

.

SinceQ is invertible we have

gk = Qyk ⇒ yk = Q−1gk

and

yT
k Qyk = gT

k Q−1gk

so that
e(yk)− e(yk+1)

e(yk)
=

(gT
k gk)2

gT
k Q−1gk gT

k Qgk

.

This can be rewritten as follows by rearranging terms:

e(yk+1) =
(

1− (gT
k gk)2

gT
k Q−1gk gT

k Qgk

)
e(yk) (4.6)

so if we can bound the expression in parentheses we have a bound on the rate of convergence of steepest descent. To
this end, we introduce the following result.

Lemma 4.1.1 (Kantorovich inequality) LetQ be a positive definite, symmetric,n×n matrix. For any vectory there
holds

(yT y)2

yT Q−1y yT Qy
≥ 4σ1σn

(σ1 + σn)2

whereσ1 andσn are, respectively, the largest and smallest singular values ofQ.
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Proof. Let
Q = UΣUT

be the singular value decomposition of the symmetric (henceV = U ) matrixQ. BecauseQ is positive definite, all its
singular values are strictly positive, since the smallest of them satisfies

σn = min
‖y‖=1

yT Qy > 0

by the definition of positive definiteness. If we let

z = UT y

we have
(yT y)2

yT Q−1y yT Qy
=

(yT UT Uy)2

yT UΣ−1UT y yT UΣUT y
=

(zT z)2

zT Σ−1z zT Σz
=

1/
∑n

i=1 θiσi∑n
i=1 θi/σi

=
φ(σ)
ψ(σ)

(4.7)

where the coefficients

θi =
z2
i

‖z‖2
add up to one. If we let

σ =
n∑

i=1

θiσi , (4.8)

then the numeratorφ(σ) in (4.7) is1/σ. Of course, there are many ways to choose the coefficientsθi to obtain a
particular value ofσ. However, each of the singular valuesσj can be obtained by lettingθj = 1 and all otherθi to
zero. Thus, the values1/σj for j = 1, . . . , n are all on the curve1/σ. The denominatorψ(σ) in (4.7) is a convex
combination of points on this curve. Since1/σ is a convex function ofσ, the values of the denominatorψ(σ) of (4.7)
must be in the shaded area in figure 4.1. This area is delimited from above by the straight line that connects point
(σ1, 1/σ1) with point (σn, 1/σn), that is, by the line with ordinate

λ(σ) = (σ1 + σn − σ)/(σ1σn) .

For the same vector of coefficientsθi, the values ofφ(σ), ψ(σ), andλ(σ) are on the vertical line corresponding to
the value ofσ given by (4.8). Thus an appropriate bound is

φ(σ)
ψ(σ)

≥ min
σ1≤σ≤σn

φ(σ)
λ(σ)

= min
σ1≤σ≤σn

1/σ

(σ1 + σn − σ)/(σ1σn)
.

The minimum is achieved atσ = (σ1 + σn)/2, yielding the desired result. ∆

Thanks to this lemma, we can state the main result on the convergence of the method of steepest descent.

Theorem 4.1.2 Let

f(x) = c + aT x +
1
2

xT Qx

be a quadratic function ofx, with Q symmetric and positive definite. For anyx0, the method of steepest descent

xk+1 = xk − gT
k gk

gT
k Qgk

gk (4.9)

where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

= a + Qxk
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Figure 4.1: Kantorovich inequality.

converges to the unique minimum point
x∗ = −Q−1a

of f . Furthermore, at every stepk there holds

f(xk+1)− f(x∗) ≤
(

σ1 − σn

σ1 + σn

)2

(f(xk)− f(x∗))

whereσ1 andσn are, respectively, the largest and smallest singular value ofQ.

Proof. From the definitions

y = x− x∗ and e(y) =
1
2

yT Qy (4.10)

we immediately obtain the expression for steepest descent in terms off andx. By equations (4.3) and (4.6) and the
Kantorovich inequality we obtain

f(xk+1)− f(x∗) = e(yk+1) =
(

1− (gT
k gk)2

gT
k Q−1gk gT

k Qgk

)
e(yk) ≤

(
1− 4σ1σn

(σ1 + σn)2

)
e(yk) (4.11)

=
(

σ1 − σn

σ1 + σn

)2

(f(xk)− f(x∗)) . (4.12)

Since the ratio in the last term is smaller than one, it follows immediately thatf(xk) − f(x∗) → 0 and hence, since
the minimum off is unique, thatxk → x∗. ∆

The ratioκ(Q) = σ1/σn is called thecondition numberof Q. The larger the condition number, the closer the
fraction(σ1 − σn)/(σ1 + σn) is to unity, and the slower convergence. It is easily seen why this happens in the case
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Figure 4.2: Trajectory of steepest descent.

in which x is a two-dimensional vector, as in figure 4.2, which shows the trajectoryxk superimposed on a set of
isocontours off(x).

There is one good, but very precarious case, namely, when the starting pointx0 is at one apex (tip of either axis)
of an isocontour ellipse. In that case, one iteration will lead to the minimumx∗. In all other cases, the line in the
directionpk of steepest descent, which is orthogonal to the isocontour atxk, will not pass throughx∗. The minimum
of f along that line is tangent to some other, lower isocontour. The next step is orthogonal to the latter isocontour (that
is, parallel to the gradient). Thus, at every step the steepest descent trajectory is forced to make a ninety-degree turn.
If isocontours were circles (σ1 = σn) centered atx∗, then the first turn would make the new direction point tox∗, and
minimization would get there in just one more step. This case, in whichκ(Q) = 1, is consistent with our analysis,
because then

σ1 − σn

σ1 + σn
= 0 .

The more elongated the isocontours, that is, the greater the condition numberκ(Q), the farther away a line orthogonal
to an isocontour passes fromx∗, and the more steps are required for convergence.

For general (that is, non-quadratic)f , the analysis above applies oncexk gets close enough to the minimum, so
thatf is well approximated by a paraboloid. In this case,Q is the matrix of second derivatives off with respect tox,
and is called theHessianof f . In summary, steepest descent is good for functions that have a well conditioned Hessian
near the minimum, but can become arbitrarily slow for poorly conditioned Hessians.

To characterize the speed of convergence of different minimization algorithms, we introduce the notion of the
order of convergence. This is defined as the largest value ofq for which the

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖q

is finite. If β is this limit, then close to the solution (that is, for large values ofk) we have

‖xk+1 − x∗‖ ≈ β‖xk − x∗‖q

for a minimization method of orderq. In other words, the distance ofxk from x∗ is reduced by theq-th power at every
step, so the higher the order of convergence, the better. Theorem 4.1.2 implies that steepest descent has at best a linear
order of convergence. In fact, the residuals|f(xk) − f(x∗)| in thevaluesof the function being minimized converge
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linearly. Since the gradient off approaches zero whenxk tends tox∗, theargumentsxk to f can converge tox∗ even
more slowly.

To complete the steepest descent algorithm we need to specify how to check whether a minimum has been reached.
One criterion is to check whether the value off(xk) has significantly decreased fromf(xk−1). Another is to check
whetherxk is significantly different fromxk−1. Close to the minimum, the derivatives off are close to zero, so
|f(xk) − f(xk−1)| may be very small but‖xk − xk−1‖ may still be relatively large. Thus, the check onxk is more
stringent, and therefore preferable in most cases. In fact, usually one is interested in the value ofx∗, rather than in that
of f(x∗). In summary, the steepest descent algorithm can be stopped when

‖xk − xk−1‖ < ε

where the positive constantε is provided by the user.
In our analysis of steepest descent, we used the HessianQ in order to compute the optimal step sizeα (see equation

(4.4)). We usedQ because it was available, but its computation during steepest descent would in general be overkill. In
fact, only gradient information is necessary to findpk, and a line search in the direction ofpk can be used to determine
the step sizeαk. In contrast, the Hessian off(x) requires computing

(
n
2

)
second derivatives ifx is ann-dimensional

vector.
Using line search to findαk guarantees that a minimum in the directionpk is actually reached even when the

parabolic approximation is inadequate. Here is how line search works.
Let

h(α) = f(xk + αpk) (4.13)

be the scalar function of one variable that is obtained by restricting the functionf to the line through the current point
xk and in the direction ofpk. Line search first determines two pointsa, c that bracket the desired minimumαk, in the
sense thata ≤ αk ≤ c, and then picks a point betweena andc, say,b = (a + c)/2. The only difficulty here is to
find c. In fact, we can seta = 0, corresponding through equation (4.13) to the starting pointxk. A point c that is on
the opposite side of the minimum with respect toa can be found by increasingα through valuesα1 = a, α2, . . . until
h(αi) is greater thanh(αi−1). Then, if we can assume thath is convex betweenα1 andαi, we can setc = αi. In
fact, the derivative ofh at a is negative, so the function is initially decreasing, but it is increasing betweenαi−1 and
αi = c, so the minimum must be somewhere betweena andc. Of course, if we cannot assume convexity, we may find
the wrong minimum, but there is no general-purpose fix to this problem.

Line search now proceeds by shrinking the bracketing triple(a, b, c) until c−a is smaller than the desired accuracy
in determiningαk. Shrinking works as follows:

if b− a > c− b
u = (a + b)/2
if f(u) > f(b)

(a, b, c) = (u, b, c)
otherwise

(a, b, c) = (a, u, b)
end

otherwise
u = (b + c)/2
if f(u) > f(b)

(a, b, c) = (a, b, u)
otherwise

(a, b, c) = (b, u, c)
end

end.
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It is easy to see that in each case the bracketing triple(a, b, c) preserves the property thatf(b) ≤ f(a) and
f(b) ≤ f(c), and therefore the minimum is somewhere betweena andc. In addition, at every step the interval(a, c)
shrinks to3/4 of its previous size, so line search will find the minimum in a number of steps that is logarithmic in the
desired accuracy.

4.2 Newton’s Method

If a function can be well approximated by a paraboloid in the region in which minimization is performed, the analysis
in the previous section suggests a straight-forward fix to the slow convergence of steepest descent. In fact, equation
(4.2) tells us how to jump in one step from the starting pointx0 to the minimumx∗. Of course, whenf(x) is not
exactly a paraboloid, the new valuex1 will be different fromx∗. Consequently, iterations are needed, but convergence
can be expected to be faster. This is the idea of Newton’s method, which we now summarize. Let

f(xk + ∆x) ≈ f(xk) + gT
k ∆x +

1
2
∆xT Qk∆x (4.14)

be the first terms of the Taylor series expansion off about the current pointxk, where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

and

Qk = Q(xk) =
∂2f

∂x∂xT

∣∣∣∣
x=xk

=




∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n




x=xk

are the gradient and Hessian off evaluated at the current pointxk. Notice that even whenf is a paraboloid, the
gradientgk is different froma as used in equation (4.1). In fact,a andQ are the coefficients of the Taylor expansion
of f around pointx = 0, while gk andQk are the coefficients of the Taylor expansion off around thecurrentpoint
xk. In other words, gradient and Hessian are constantly reevaluated in Newton’s method.

To the extent that approximation (4.14) is valid, we can set the derivatives off(xk + ∆x) with respect to∆x to
zero, and obtain, analogously to equation (4.2), the linear system

Qk∆x = −gk , (4.15)

whose solution∆xk = αkpk yields at the same time the step directionpk = ∆xk/‖∆xk‖ and the step sizeαk =
‖∆xk‖. The direction is of course undefined once the algorithm has reached a minimum, that is, whenαk = 0.

A minimization algorithm in which the step directionpk and sizeαk are defined in this manner is calledNewton’s
method. The correspondingpk is termed theNewton direction, and the step defined by equation (4.15) is theNewton
step.

The greater speed of Newton’s method over steepest descent is borne out by analysis: while steepest descent has a
linear order of convergence, Newton’s method is quadratic. In fact, let

y(x) = x−Q(x)−1g(x)

be the place reached by a Newton step starting atx (see equation (4.15)), and suppose that at the minimumx∗ the
HessianQ(x∗) is nonsingular. Then

y(x∗) = x∗

becauseg(x∗) = 0, and
xk+1 − x∗ = y(xk)− x∗ = y(xk)− y(x∗) .
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From the mean-value theorem, we have

‖xk+1 − x∗‖ = ‖y(xk)− y(x∗)‖ ≤
∥∥∥∥
[

∂y
∂xT

]

x=x∗
(xk − x∗)

∥∥∥∥ +
1
2

∣∣∣∣
∂2y

∂x∂xT

∣∣∣∣
x=x̂

‖xk − x∗‖2

wherex̂ is some point on the line betweenx∗ andxk. Sincey(x∗) = x∗, the first derivatives ofy atx∗ are zero, so that
the first term in the right-hand side above vanishes, and

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖2

wherec depends on third-order derivatives off nearx∗. Thus, the convergence rate of Newton’s method is of order at
least two.

For a quadratic function, as in equation (4.1), steepest descent takes many steps to converge, while Newton’s
method reaches the minimum in one step. However, this single iteration in Newton’s method is more expensive,
because it requires both the gradientgk and the HessianQk to be evaluated, for a total ofn +

(
n
2

)
derivatives. In

addition, the Hessian must be inverted, or, at least, system (4.15) must be solved. For very large problems, in which
the dimensionn of x is thousands or more, storing and manipulating a Hessian can be prohibitive. In contrast, steepest
descent requires the gradientgk for selecting the step directionpk, and a line search in the directionpk to find the
step size. The method of conjugate gradients, discussed in the next section, is motivated by the desire to accelerate
convergence with respect to the steepest descent method, but without paying the storage cost of Newton’s method.

4.3 Conjugate Gradients

Newton’s method converges faster (quadratically) than steepest descent (linear convergence rate) because it uses more
information about the functionf being minimized. Steepest descent locally approximates the function with planes,
because it only uses gradient information. All it can do is to go downhill. Newton’s method approximatesf with
paraboloids, and then jumps at every iteration to the lowest point of the current approximation. The bottom line is that
fast convergence requires work that is equivalent to evaluating the Hessian off .

Prima facie, the method of conjugate gradients discussed in this section seems to violate this principle: it achieves
fast, superlinear convergence, similarly to Newton’s method, but it only requires gradient information. This paradox,
however, is only apparent. Conjugate gradients works by takingn steps for each of the steps in Newton’s method.
It effectively solves the linear system (4.2) of Newton’s method, but it does so by a sequence ofn one-dimensional
minimizations, each requiring one gradient computation and one line search.

Overall, the work done by conjugate gradients is equivalent to that done by Newton’s method. However, system
(4.2) is never constructed explicitly, and the matrixQ is never stored. This is very important in cases wherex has
thousands or even millions of components. These high-dimensional problems arise typically from the discretization
of partial differential equations. Say for instance that we want to compute the motion of points in an image as a
consequence of camera motion. Partial differential equations relate image intensities over space and time to the motion
of the underlying image features. At every pixel in the image, this motion, called themotion field, is represented by
a vector whose magnitude and direction describe the velocity of the image feature at that pixel. Thus, if an image
has, say, a quarter of a million pixels, there aren = 500, 000 unknown motion field values. Storing and inverting a
500, 000× 500, 000 Hessian is out of the question. In cases like these, conjugate gradients saves the day.

The conjugate gradients method described in these notes is the so-called Polak-Ribière variation. It will be intro-
duced in three steps. First, it will be developed for the simple case of minimizing a quadratic function with positive-
definite and known Hessian. This quadratic functionf(x) was introduced in equation (4.1). We know that in this case
minimizingf(x) is equivalent to solving the linear system (4.2). Rather than an iterative method, conjugate gradients
is a direct method for the quadratic case. This means that the number of iterations is fixed. Specifically, the method
converges to the solution inn steps, wheren is the number of components ofx. Because of the equivalence with
a linear system, conjugate gradients for the quadratic case can also be seen as an alternative method for solving a
linear system, although the version presented here will only work if the matrix of the system is symmetric and positive
definite.
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Second, the assumption that the HessianQ in expression (4.1) is known will be removed. As discussed above, this
is the main reason for using conjugate gradients.

Third, the conjugate gradients method will be extended to general functionsf(x). In this case, the method is no
longer direct, but iterative, and the cost of finding the minimum depends on the desired accuracy. This occurs because
the Hessian off is no longer a constant, as it was in the quadratic case. As a consequence, a certain property that holds
in the quadratic case is now valid only approximately. In spite of this, the convergence rate of conjugate gradients is
superlinear, somewhere between Newton’s method and steepest descent. Finding tight bounds for the convergence rate
of conjugate gradients is hard, and we will omit this proof. We rely instead on the intuition that conjugate gradients
solves system (4.2), and that the quadratic approximation becomes more and more valid as the algorithm converges
to the minimum. If the functionf starts to behave like a quadratic function early, that is, iff is nearly quadratic in a
large neighborhood of the minimum, convergence is fast, as it requires close to then steps that are necessary in the
quadratic case, and each of the steps is simple. This combination of fast convergence, modest storage requirements,
and low computational cost per iteration explains the popularity of conjugate gradients methods for the optimization
of functions of a large number of variables.

4.3.1 The Quadratic Case

Suppose that we want to minimize the quadratic function

f(x) = c + aT x +
1
2

xT Qx (4.16)

whereQ is a symmetric, positive definite matrix, andx hasn components. As we saw in our discussion of steepest
descent, the minimumx∗ is the solution to the linear system

Qx = −a . (4.17)

We know how to solve such a system. However, all the methods we have seen so far involve explicit manipulation
of the matrixQ. We now consider an alternative solution method that does not needQ, but only the quantity

gk = Qxk + a

that is, the gradient off(x), evaluated atn different pointsx1, . . . , xn. We will see that the conjugate gradients method
requiresn gradient evaluations andn line searchesin lieu of eachn× n matrix inversion in Newton’s method.

Formal proofs can be found in Elijah Polak,Optimization — Algorithms and consistent approximations, Springer,
NY, 1997. The arguments offered below appeal to intuition.

Consider the casen = 3, in which the variablex in f(x) is a three-dimensional vector. Then the quadratic function
f(x) is constant over ellipsoids, calledisosurfaces, centered at the minimumx∗. How can we start from a pointx0

on one of these ellipsoids and reachx∗ by a finite sequence of one-dimensional searches? In connection with steepest
descent, we noticed that for poorly conditioned Hessians orthogonal directions lead to many small steps, that is, to
slow convergence.

When the ellipsoids are spheres, on the other hand, this works much better. The first step takes fromx0 to x1, and
the line betweenx0 andx1 is tangent to an isosurface atx1. The next step is in the direction of the gradient, so that
the new directionp1 is orthogonal to the previous directionp0. This would then take us tox∗ right away. Suppose
however that we cannot afford to compute this special directionp1 orthogonal top0, but that we can only compute
somedirectionp1 orthogonal top0 (there is ann − 1-dimensional space of such directions!). It is easy to see that in
that casen steps will take us tox∗. In fact, since isosurfaces are spheres, each line minimization is independent of the
others: The first step yields the minimum in the space spanned byp0, the second step then yields the minimum in the
space spanned byp0 andp1, and so forth. Aftern steps we must be done, sincep0 . . . , pn−1 span the whole space.

In summary, any set of orthogonal directions, with a line search in each direction, will lead to the minimum for
spherical isosurfaces. Given an arbitrary set of ellipsoidal isosurfaces, there is a one-to-one mapping with a spherical
system: ifQ = UΣUT is the SVD of the symmetric, positive definite matrixQ, then we can write

1
2

xT Qx =
1
2

yT y
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where
y = Σ1/2UT x . (4.18)

Consequently, there must be a condition for the original problem (in terms ofQ) that is equivalent to orthogonality for
the spherical problem. If two directionsqi andqj are orthogonal in the spherical context, that is, if

qT
i qj = 0 ,

what does this translate into in terms of the directionspi andpj for the ellipsoidal problem? We have

qi,j = Σ1/2UT pi,j ,

so that orthogonality forqi,j becomes

pT
i UΣ1/2Σ1/2UT pj = 0

or
pT

i Qpj = 0 . (4.19)

This condition is calledQ-conjugacy, or Q-orthogonality: if equation (4.19) holds, thenpi andpj are said to be
Q-conjugate orQ-orthogonal to each other. We will henceforth simply say “conjugate” for brevity.

In summary, if we can findn directionsp0, . . . , pn−1 that are mutually conjugate, and if we do line minimization
along each directionpk, we reach the minimum in at mostn steps. Of course, we cannot use the transformation (4.18)
in the algorithm, becauseΣ and especiallyUT are too large. So now we need to find a method for generatingn
conjugate directions without using eitherQ or its SVD. We do this in two steps. First, we find conjugate directions
whose definitions do involveQ. Then, in the next subsection, we rewrite these expressions withoutQ.

Here is the procedure, due to Hestenes and Stiefel (Methods of conjugate gradients for solving linear systems, J.
Res. Bureau National Standards, section B, Vol 49, pp. 409-436, 1952), which also incorporates the steps fromx0 to
xn:

g0 = g(x0)
p0 = −g0

for k = 0 . . . , n− 1
αk = arg minα≥0 f(xk + αpk)
xk+1 = xk + αkpk

gk+1 = g(xk+1)

γk =
gT

k+1Qp
k

pT
k

Qp
k

pk+1 = −gk+1 + γkpk

end

where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

is the gradient off atxk.
It is simple to see thatpk andpk+1 are conjugate. In fact,

pT
k Qpk+1 = pT

k Q(−gk+1 + γkpk)

= −pT
k Qgk+1 +

gT
k+1Qpk

pT
k Qpk

pT
k Qpk

= −pT
k Qgk+1 + gT

k+1Qpk = 0 .

It is somewhat more cumbersome to show thatpi andpk+1 for i = 0, . . . , k are also conjugate. This can be done by
induction. The proof is based on the observation that the vectorspk are found by a generalization of Gram-Schmidt
(theorem 2.4.2) to produce conjugate rather than orthogonal vectors. Details can be found in Polak’s book mentioned
earlier.
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4.3.2 Removing the Hessian

The algorithm shown in the previous subsection is a correct conjugate gradients algorithm. However, it is computa-
tionally inadequate because the expression forγk contains the HessianQ, which is too large. We now show thatγk

can be rewritten in terms of the gradient valuesgk andgk+1 only. To this end, we notice that

gk+1 = gk + αkQpk ,

or
αkQpk = gk+1 − gk .

In fact,
g(x) = a + Qx

so that
gk+1 = g(xk+1) = g(xk + αkpk) = a + Q(xk + αkpk) = gk + αkQpk .

We can therefore write

γk =
gT

k+1Qpk

pT
k Qpk

=
gT

k+1αkQpk

pT
k αkQpk

=
gT

k+1(gk+1 − gk)
pT

k (gk+1 − gk)
,

andQ has disappeared.
This expression forγk can be further simplified by noticing that

pT
k gk+1 = 0

because the line alongpk is tangent to an isosurface atxk+1, while the gradientgk+1 is orthogonal to the isosurface at
xk+1. Similarly,

pT
k−1gk = 0 .

Then, the denominator ofγk becomes

pT
k (gk+1 − gk) = −pT

k gk = (gk − γk−1pk−1)
T gk = gT

k gk .

In conclusion, we obtain thePolak-Ribìere formula

γk =
gT

k+1(gk+1 − gk)
gT

k gk

.

4.3.3 Extension to General Functions

We now know how to minimize the quadratic function (4.16) inn steps, without ever constructing the Hessian explic-
itly. When the functionf(x) is arbitrary, the same algorithm can be used.

However,n iterations will not suffice. In fact, the Hessian, which was constant for the quadratic case, now is a
function of xk. Strictly speaking, we then lose conjugacy, sincepk andpk+1 are associated to different Hessians.
However, as the algorithm approaches the minimumx∗, the quadratic approximation becomes more and more valid,
and a few cycles ofn iterations each will achieve convergence.
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Chapter 5

Eigenvalues and Eigenvectors

Given a linear transformation
b = Ax ,

the singular value decompositionA = UΣV T of A transforms the domain of the transformation via the matrixV T

and its range via the matrixUT so that the transformed system is diagonal. In fact, the equationb = UΣV T x can be
written as follows

UT b = ΣV T x ,

that is,
c = Σy

where

y = V T x and c = UT b ,

and whereΣ is diagonal. This is a fundamental transformation to use whenever the domain and the range ofA are
separate spaces. Often, however, domain and range are intimately related to one another even independently of the
transformationA. The most important example is perhaps that of a system of linear differential equations, of the form

ẋ = Ax

whereA is n×n. For this equation, the fact thatA is square is not a coincidence. In fact,x is assumed to be a function
of some real scalar variablet (often time), anḋx is the derivative ofx with respect tot:

ẋ =
dx
dt

.

In other words, there is an intimate, pre-existing relation betweenx and ẋ, and one cannot change coordinates forx
without also changing those forẋ accordingly. In fact, ifV is an orthogonal matrix and we define

y = V T x ,

then the definition oḟx forces us to transforṁx by V T as well:

d V T x
dt

= V T dx
dt

= V T ẋ .

In brief, the SVD does nothing useful for systems of linear differential equations, because it diagonalizesA by two
different transformations, one for the domain and one for the range, while we need a single transformation. Ideally,
we would like to find an orthogonal matrixS and a diagonal matrixΛ such that

A = SΛST (5.1)

53
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so that if we define
y = ST x

we can write the equivalent butdiagonaldifferential system

ẏ = Λy .

This is now much easier to handle, because it is a system ofn independent, scalar differential equations, which can be
solved separately. The solutions can then be recombined through

x = Sy .

We will see all of this in greater detail soon.
Unfortunately, writingA in the form (5.1) is not always possible. This stands to reason, because now we are

imposing stronger constraints on the terms of the decomposition. It is like doing an SVD but with the additional
constraintU = V . If we refer back to figure 3.1, now the circle and the ellipse live in the same space, and the
constraintU = V implies that the vectorsvi on the circle that map into the axesσiui of the ellipse are parallel to the
axes themselves. This will only occur for very special matrices.

In order to make a decomposition like (5.1) possible, we weaken the constraints in several ways:

• the elements ofS andΛ are allowed to be complex, rather than real;

• the elements on the diagonal ofΛ are allowed to be negative; in fact, they can be even non-real;

• S is required to be only invertible, rather than orthogonal.

To distinguish invertible from orthogonal matrices we use the symbolQ for invertible andS for orthogonal. In some
cases, it will be possible to diagonalizeA by orthogonal transformationsS andST . Finally, for complex matrices we
generalize the notion of transpose by introducing theHermitianoperator: The matrixQH (pronounced “Q Hermitian”)
is defined to be the complex conjugate of the transpose ofQ. If Q happens to be real, conjugate transposition becomes
simply transposition, so the Hermitian is a generalization of the transpose. A matrixS is said to beunitary if

SHS = SSH = I ,

so unitary generalizes orthogonal for complex matrices. Unitary matrices merely rotate or flip vectors, in the sense
that they do not alter the vectors’ norms. For complex vectors, the norm squared is defined as

‖x‖2 = xHx ,

and ifS is unitary we have
‖Sx‖2 = xHSHSx = xHx = ‖x‖2 .

Furthermore, ifx1 andx2 are mutuallyorthogonal, in the sense that

xH
1 x2 = 0 ,

thenSx1 andSx2 are orthogonal as well:

xH
1 SHSx2 = xH

1 x2 = 0 .

In contrast, a nonunitary transformationQ can change the norms of vectors, as well as the inner products between
vectors. A matrix that is equal to its Hermitian is called a Hermitian matrix.

In summary, in order to diagonalize a square matrixA from a system of linear differential equations we generally
look for a decomposition ofA of the form

A = QΛQ−1 (5.2)
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whereQ andΛ are complex,Q is invertible, andΛ is diagonal. For some special matrices, this may specialize to

A = SΛSH

with unitaryS.
Whenever two matricesA andB, diagonal or not, are related by

A = QBQ−1 ,

they are said to besimilar to each other, and the transformation ofB into A (and vice versa) is called asimilarity
transformation.

The equationA = QΛQ−1 can be rewritten as follows:

AQ = QΛ

or separately for every column ofQ as follows:
Aqi = λiqi (5.3)

where

Q =
[

q1 · · · qn

]
and Λ = diag(λ1, . . . , λn) .

Thus, the columns ofqi of Q and the diagonal entriesλi of Λ are solutions of theeigenvalue/eigenvectorequation

Ax = λx , (5.4)

which is how eigenvalues and eigenvectors are usually introduced. In contrast, we havederivedthis equation from the
requirement of diagonalizing a matrix by a similarity transformation. The columns ofQ are calledeigenvectors, and
the diagonal entries ofΛ are called eigenvalues.

−2 −1 0 1 2
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−1.5
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−0.5

0

0.5

1

1.5

2

Figure 5.1: Effect of the transformation (5.5) on a sample of points on the unit circle. The dashed lines are vectors that
do not change direction under the transformation.

That real eigenvectors and eigenvalues do not always exist can be clarified by considering the eigenvalue problem
from a geometrical point of view in then = 2 case. As we know, an invertible linear transformation transforms the
unit circle into an ellipse. Each point on the unit circle is transformed into some point on the ellipse. Figure 5.1 shows
the effect of the transformation represented by the matrix

A =
[

2/3 4/
√

3
0 2

]
(5.5)
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for a sample of points on the unit circle. Notice that there are many transformations that map the unit circle into the
same ellipse. In fact, the circle in figure 5.1 can be rotated, pulling the solid lines along. Each rotation yields another
matrix A, but the resulting ellipse is unchanged. In other words, the curve-to-curve transformation from circle to
ellipse is unique, but the point-to-point transformation is not. Matrices represent point-to-point transformations.

The eigenvalue problem amounts to finding axesq1, q2 that are mapped into themselves by the original transfor-
mationA (see equation (5.3)). In figure 5.1, the two eigenvectors are shown as dashed lines. Notice that they do not
correspond to the axes of the ellipse, and that they are not orthogonal. Equation (5.4) is homogeneous inx, sox can
be assumed to be a unit vector without loss of generality.

Given that the directions of the input vectors are generally changed by the transformationA, as evident from figure
5.1, it is not obvious whether the eigenvalue problem admits a solution at all. We will see that the answer depends
on the matrixA, and that a rather diverse array of situations may arise. In some cases, the eigenvalues and their
eigenvectors exist, but they are complex. The geometric intuition is hidden, and the problem is best treated as an
algebraic one. In other cases, all eigenvalues exist, perhaps all real, but not enough eigenvectors can be found, and the
matrixA cannot be diagonalized. In particularly good cases, there aren real, orthonormal eigenvectors. In bad cases,
we have to give up the idea of diagonalizingA, and we can only triangularize it. This turns out to be good enough for
solving linear differential systems, just as triangularization was sufficient for solving linear algebraic systems.

5.1 Computing Eigenvalues and Eigenvectors Algebraically

Let us rewrite the eigenvalue equation
Ax = λx

as follows:
(A− λI)x = 0 . (5.6)

This is a homogeneous, square system of equations, which admits nontrivial solutions iff the matrixA − λI is rank-
deficient. A square matrixB is rank-deficient iff itsdeterminant,

det(B) =
{

b11 if B is 1× 1∑n
i=1(−1)i+1bi1 det(Bi1) otherwise

is zero. In this expression,Bij is thealgebraic complementof entry bij , defined as the(n − 1) × (n − 1) matrix
obtained by removing rowi and columnj from B.

Volumes have been written about the properties of the determinant. For our purposes, it is sufficient to recall the
following properties from linear algebra:

• det(B) = det(BT );

• det(
[

b1 · · · bn

]
) = 0 iff b1, . . . , bn are linearly dependent;

• det(
[

b1 · · · bi · · · bj · · · bn

]
) = − det(

[
b1 · · · bj · · · bi · · · bn

]
);

• det(BC) = det(B) det(C).

Thus, for system (5.6) to admit nontrivial solutions, we need

det(A− λI) = 0 . (5.7)

From the definition of determinant, it follows, by very simple induction, that the left-hand side of equation (5.7)
is a polynomial of degreen in λ, and that the coefficient ofλn is 1. Therefore, equation (5.7), which is called the
characteristic equationof A, hasn complex solutions, in the sense that

det(A− λI) = (−1)n(λ− λ1) · . . . · (λ− λn)

where some of theλi may coincide. In other words, ann × n matrix has at mostn distinct eigenvalues. The case of
exactlyn distinct eigenvalues is of particular interest, because of the following results.
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Theorem 5.1.1 Eigenvectorsx1, . . . , xk corresponding to distinct eigenvaluesλ1, . . . , λk are linearly independent.

Proof. Suppose thatc1x1 + . . . + ckxk = 0 where thexi are eigenvectors of a matrixA. We need to show that then
c1 = . . . = ck = 0. By multiplying byA we obtain

c1Ax1 + . . . + ckAxk = 0

and becausex1, . . . , xk are eigenvectors corresponding to eigenvaluesλ1, . . . , λk, we have

c1λ1x1 + . . . + ckλkxk = 0 . (5.8)

However, from
c1x1 + . . . + ckxk = 0

we also have
c1λkx1 + . . . + ckλkxk = 0

and subtracting this equation from equation (5.8) we have

c1(λ1 − λk)x1 + . . . + ck−1(λk−1 − λk)xk−1 = 0 .

Thus, we have reduced the summation to one containingk − 1 terms. Since allλi are distinct, the differences in
parentheses are all nonzero, and we can replace eachxi by x′i = (λi − λk)xi, which is still an eigenvector ofA:

c1x′1 + . . . + ck−1x′k−1 = 0 .

We can repeat this procedure until only one term remains, and this forcesc1 = 0, so that

c2x2 + . . . + ckxk = 0

This entire argument can be repeated for the last equation, therefore forcingc2 = 0, and so forth.
In summary, the equationc1x1 + . . .+ckxk = 0 implies thatc1 = . . . = ck = 0, that is, that the vectorsx1, . . . , xk

are linearly independent. ∆

For Hermitian matrices (and therefore for real symmetric matrices as well), the situation is even better.

Theorem 5.1.2 A Hermitian matrix has real eigenvalues.

Proof. A matrix A is Hermitian iffA = AH . Let λ andx be an eigenvalue ofA and a corresponding eigenvector:

Ax = λx . (5.9)

By taking the Hermitian we obtain
xHAH = λ∗xH .

SinceA = AH , the last equation can be rewritten as follows:

xHA = λ∗xH . (5.10)

If we multiply equation (5.9) from the left byxH and equation (5.10) from the right byx, we obtain

xHAx = λxHx

xHAx = λ∗xHx

which implies that
λxHx = λ∗xHx
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Sincex is an eigenvector, the scalarxHx is nonzero, so that we have

λ = λ∗

as promised. ∆

Corollary 5.1.3 A real and symmetric matrix has real eigenvalues.

Proof. A real and symmetric matrix is Hermitian. ∆

Theorem 5.1.4 Eigenvectors corresponding to distinct eigenvalues of a Hermitian matrix are mutually orthogonal.

Proof. Let λ andµ be two distinct eigenvalues ofA, and letx andy be corresponding eigenvectors:

Ax = λx

Ay = µy ⇒ yHA = µyH

becauseA = AH and from theorem 5.1.2µ = µ∗. If we multiply these two equations byyH from the left andx from
the right, respectively, we obtain

yHAx = λyHx

yHAx = µyHx ,

which implies
λyHx = µyHx

or
(λ− µ)yHx = 0 .

Since the two eigenvalues are distinct,λ− µ is nonzero, and we must haveyHx = 0. ∆

Corollary 5.1.5 Ann× n Hermitian matrix withn distinct eigenvalues admitsn orthonormal eigenvectors.

Proof. From theorem 5.1.4, the eigenvectors of ann×n Hermitian matrix withn distinct eigenvalues are all mutu-
ally orthogonal. Since the eigenvalue equationAx = λx is homogeneous inx, the vectorx can be normalized without
violating the equation. Consequently, the eigenvectors can be made to be orthonormal. ∆

In summary, any square matrix withn distinct eigenvalues can be diagonalized by a similarity transformation, and
any square Hermitian matrix withn distinct eigenvalues can be diagonalized by a unitary similarity transformation.

Notice that the converse is not true: a matrix can have coincident eigenvalues and still admitn independent, and
even orthonormal, eigenvectors. For instance, then × n identity matrix hasn equal eigenvalues butn orthonormal
eigenvectors (which can be chosen in infinitely many ways).

The examples in section 5.2 show that when some eigenvalues coincide, rather diverse situations can arise concern-
ing the eigenvectors. First, however, we point out a simple but fundamental fact about the eigenvalues of a triangular
matrix.

Theorem 5.1.6 The determinant of a triangular matrix is the product of the elements on its diagonal.



5.2. GOOD AND BAD MATRICES 59

Proof. This follows immediately from the definition of determinant. Without loss of generality, we can assume a
triangular matrixB to be upper-triangular, for otherwise we can repeat the argument for the transpose, which because
of the properties above has the same eigenvalues. Then, the only possibly nonzerobi1 of the matrixB is b11, and the
summation in the definition of determinant given above reduces to a single term:

det(B) =
{

b11 if B is 1× 1
b11 det(B11) otherwise

.

By repeating the argument forB11 and so forth until we are left with a single scalar, we obtain

det(B) = b11 · . . . · bnn .

∆

Corollary 5.1.7 The eigenvalues of a triangular matrix are the elements on its diagonal.

Proof. The eigenvalues of a matrixA are the solutions of the equation

det(A− λI) = 0 .

If A is triangular, so isB = A− λI, and from the previous theorem we obtain

det(A− λI) = (a11 − λ) · . . . · (ann − λ)

which is equal to zero for
λ = a11, . . . , ann .

∆

Note that diagonal matrices are triangular, so this result holds for diagonal matrices as well.

5.2 Good and Bad Matrices

Solving differential equations becomes much easier when matrices have a full set of orthonormal eigenvectors. For
instance, the matrix

A =
[

2 0
0 1

]
(5.11)

has eigenvalues2 and1 and eigenvectors

s1 =
[

1
0

]
s2 =

[
0
1

]
.

Matrices withn orthonormal eigenvectors are callednormal. Normal matrices are good news, because then the
n× n system of differential equations

ẋ = Ax

has solution

x(t) =
n∑

i=1

cisi eλit = S




eλ1t

. ..
eλnt


 c
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whereS = [s1 · · · sn] are the eigenvectors,λi are the eigenvalues, and the vectorc of constantsci is

c = SHx(0) .

More compactly,

x(t) = S




eλ1t

. ..
eλnt


 SHx(0) .

Fortunately these matrices occur frequently in practice. However, not all matrices are as good as these. First, there
may still be a complete set ofn eigenvectors, but they may not be orthonormal. An example of such a matrix is

[
2 −1
0 1

]

which has eigenvalues2 and1 and nonorthogonal eigenvectors

q1 =
[

1
0

]
q2 =

√
2

2

[
1
1

]
.

This is conceptually only a slight problem, because the unitary matrixS is replaced by an invertible matrixQ, and the
solution becomes

x(t) = Q




eλ1t

. ..
eλnt


 Q−1x(0) .

Computationally this is more expensive, because a computation of a Hermitian is replaced by a matrix inversion.
However, things can be worse yet, and a full set of eigenvectors may fail to exist, as we now show.
A necessary condition for ann× n matrix to bedefective, that is, to have fewer thann eigenvectors, is that it have

repeated eigenvalues. In fact, we have seen (theorem 5.1.1) that a matrix with distinct eigenvalues (zero or nonzero
does not matter) has a full set of eigenvectors (perhaps nonorthogonal, but independent). The simplest example of a
defective matrix is [

0 1
0 0

]

which has double eigenvalue0 and only eigenvector[1 0]T , while
[

3 1
0 3

]

has double eigenvalue3 and only eigenvector[1 0]T , so zero eigenvalues are not the problem.
However, repeated eigenvalues are not a sufficient condition for defectiveness, as the identity matrix proves.
How bad can a matrix be? Here is a matrix that is singular, has fewer thann eigenvectors, and the eigenvectors it

has are not orthogonal. It belongs to the scum of all matrices:

A =




0 2 −1
0 2 1
0 0 2


 .

Its eigenvalues are0, because the matrix is singular, and2, repeated twice.A has to have a repeated eigenvalue if it is
to be defective. Its two eigenvectors are

q1 =




1
0
0


 , q2 =

√
2

2




1
1
0




corresponding to eigenvalues0 and2 in this order, and there is noq3. Furthermore,q1 andq2 are not orthogonal to
each other.
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5.3 Computing Eigenvalues and Eigenvectors Numerically

The examples above have shown that not everyn × n matrix admitsn independent eigenvectors, so some matrices
cannot be diagonalized by similarity transformations. Fortunately, these matrices can betriangularizedby similarity
transformations, as we now show. We will show later on that this allows solving systems of linear differential equations
regardless of the structure of the system’s matrix of coefficients.

It is important to notice that if a matrixA is triangularized by similarity transformations,

T = Q−1AQ ,

then the eigenvalues of the triangular matrixT are equal to those of the original matrixA. In fact, if

Ax = λx ,

then
QTQ−1x = λx ,

that is,
Ty = λy

where
y = Q−1x ,

soλ is also an eigenvalue forT . The eigenvectors, however, are changed according to the last equation.
The Schur decomposition does even better, since it triangularizes any square matrixA by a unitary (possibly

complex) transformation:
T = SHAS .

This transformation is equivalent to factoringA into the product

A = STSH ,

and this product is called theSchur decompositionof A. Numerically stable and efficient algorithms exist for the Schur
decomposition. In this note, we will not study these algorithms, but only show that all square matrices admit a Schur
decomposition.

5.3.1 Rotations into thex1 Axis

An important preliminary fact concerns vector rotations. Lete1 be the first column of the identity matrix. It is
intuitively obvious that any nonzero real vectorx can be rotated into a vector parallel toe1. Formally, take any
orthogonal matrixS whose first column is

s1 =
x
‖x‖ .

SincesT
1 x = xT x/‖x‖ = ‖x‖, and since all the othersj are orthogonal tos1, we have

ST x =




sT
1
...

sT
n


 x =




sT
1 x
...

sT
n x


 =




‖x‖
0
...
0




which is parallel toe1 as desired. It may be less obvious that acomplexvectorx can be transformed into areal vector
parallel toe1 by a unitary transformation. But the trick is the same: let

s1 =
x
‖x‖ .
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Now s1 may be complex. We havesH
1 x = xHx/‖x‖ = ‖x‖, and

SHx =




sH
1
...

sH
n


 x =




sH
1 x
...

sH
n x


 =




‖x‖
0
...
0


 ,

just about like before. We are now ready to triangularize an arbitrary square matrixA.

5.3.2 The Schur Decomposition

The Schur decomposition theorem is the cornerstone of eigenvalue computations. It states that any square matrix can
be triangularized by unitary transformations. The diagonal elements of a triangular matrix are its eigenvalues, and
unitary transformations preserve eigenvalues. Consequently, if the Schur decomposition of a matrix can be computed,
its eigenvalues can be determined. Moreover, as we will see later, a system of linear differential equations can be
solved regardless of the structure of the matrix of its coefficients.

Lemma 5.3.1 If A is ann× n matrix andλ andx are an eigenvalue ofA and its corresponding eigenvector,

Ax = λx (5.12)

then there is a transformation
T = UHAU

whereU is a unitary,n× n matrix, such that

T =




λ
0
...
0

C


 .

Proof. Let U be a unitary transformation that transforms the (possibly complex) eigenvectorx of A into a real
vector on thex1 axis:

x = U




r
0
...
0




wherer is the nonzero norm ofx. By substituting this into (5.12) and rearranging we have

AU




r
0
...
0


 = λU




r
0
...
0




UHAU




r
0
...
0


 = λ




r
0
...
0




UHAU




1
0
...
0


 = λ




1
0
...
0






5.3. COMPUTING EIGENVALUES AND EIGENVECTORS NUMERICALLY 63

T




1
0
...
0


 =




λ
0
...
0


 .

The last left-hand side is the first column ofT , and the corresponding right-hand side is of the form required by the
lemma. ∆

Theorem 5.3.2 (Schur) If A is anyn× n matrix then there exists a unitaryn× n matrixS such that

SHAS = T

whereT is triangular. Furthermore,S can be chosen so that the eigenvaluesλi of A appear in any order along the
diagonal ofT .

Proof. By induction. The theorem obviously holds forn = 1:

1 A 1 = A .

Suppose it holds for all matrices of ordern− 1. Then from the lemma there exists a unitaryU such that

UHAU =




λ
0
...
0

C




whereλ is any eigenvalue ofA. PartitionC into a row vector and an(n− 1)× (n− 1) matrixG:

C =
[

wH

G

]
.

By the inductive hypothesis, there is a unitary matrixV such thatV HGV is a Schur decomposition ofG. Let

S = U




1 0 · · · 0
0
...
0

V


 .

Clearly,S is a unitary matrix, andSHAS is upper-triangular. Since the elements on the diagonal of a triangular matrix
are the eigenvalues,SHAS is the Schur decomposition ofA. Because we can pick any eigenvalue asλ, the order of
eigenvalues can be chosen arbitrarily. ∆

This theorem does not say how to compute the Schur decomposition, only that it exists. Fortunately, there is a
stable and efficient algorithm to compute the Schur decomposition. This is the preferred way to compute eigenvalues
numerically.
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5.4 Eigenvalues/Vectors and Singular Values/Vectors

In this section we prove a few additional important properties of eigenvalues and eigenvectors. In the process, we also
establish a link between singular values/vectors and eigenvalues/vectors. While this link is very important, it is useful
to remember that eigenvalues/vectors and singular values/vectors are conceptually and factually very distinct entities
(recall figure 5.1).

First, a general relation between determinant and eigenvalues.

Theorem 5.4.1 The determinant of a matrix is equal to the product of its eigenvalues.

Proof. The proof is very simple, given the Schur decomposition. In fact, we know that the eigenvalues of a matrix
A are equal to those of the triangular matrix in the Schur decomposition ofA. Furthermore, we know from theorem
5.1.6 that the determinant of a triangular matrix is the product of the elements on its diagonal. If we recall that a
unitary matrix has determinant 1 or -1, that the determinants ofS andSH are the same, and that the determinant of a
product of matrices is equal to the product of the determinants, the proof is complete. ∆

We saw that ann× n Hermitian matrix withn distinct eigenvalues admitsn orthonormal eigenvectors (corollary
5.1.5). The assumption of distinct eigenvalues made the proof simple, but is otherwise unnecessary. In fact, now that
we have the Schur decomposition, we can state the following stronger result.

Theorem 5.4.2 (Spectral theorem)Every Hermitian matrix can be diagonalized by a unitary matrix, and every real
symmetric matrix can be diagonalized by an orthogonal matrix:

A = AH ⇒ A = SΛSH

A real, A = AT ⇒ A = SΛST , S real .

In either case,Λ is real and diagonal.

Proof. We already know that Hermitian matrices (and therefore real and symmetric ones) have real eigenvalues
(theorem 5.1.2), soΛ is real. Let now

A = STSH

be the Schur decomposition ofA. SinceA is Hermitian, so isT . In fact,T = SHAS, and

TH = (SHAS)H = SHAHS = SHAS = T .

But the only way thatT can be both triangular and Hermitian is for it to be diagonal, because0∗ = 0. Thus, the
Schur decomposition of a Hermitian matrix is in fact a diagonalization, and this is the first equation of the theorem
(the diagonal of a Hermitian matrix must be real).

Let nowA be real and symmetric. All that is left to prove is that then its eigenvectors are real. But eigenvectors are
the solution of the homogeneous system (5.6), which is both real and rank-deficient, and therefore admits nontrivial
real solutions. Thus,S is real, andSH = ST . ∆

In other words, a Hermitian matrix, real or not, with distinct eigenvalues or not, has real eigenvalues andn or-
thonormal eigenvectors. If in addition the matrix is real, so are its eigenvectors.

We recall that a real matrixA such that for every nonzerox we havexT Ax > 0 is said to bepositive definite. It is
positive semidefiniteif for every nonzerox we havexT Ax ≥ 0. Notice that a positive definite matrix is also positive
semidefinite. Positive definite or semidefinite matrices arise in the solution of overconstrained linear systems, because
AT A is positive semidefinite for everyA (lemma 5.4.5). They also occur in geometry through the equation of an
ellipsoid,

xT Qx = 1
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in which Q is positive definite. In physics, positive definite matrices are associated to quadratic formsxT Qx that
represent energies or second-order moments of mass or force distributions. Their physical meaning makes them
positive definite, or at least positive semidefinite (for instance, energies cannot be negative). The following result
relates eigenvalues/vectors with singular values/vectors for positive semidefinite matrices.

Theorem 5.4.3 The eigenvalues of a real, symmetric, positive semidefinite matrixA are equal to its singular values.
The eigenvectors ofA are also its singular vectors, both left and right.

Proof. From the previous theorem,A = SΛST , where bothΛ andS are real. Furthermore, the entries inΛ are
nonnegative. In fact, from

Asi = λsi

we obtain
sT
i Asi = sT

i λsi = λsT
i si = λ‖si‖2 = λ .

If A is positive semidefinite, thenxT Ax ≥ 0 for any nonzerox, and in particularsT
i Asi ≥ 0, so thatλ ≥ 0.

But
A = SΛST

with nonnegative diagonal entries inΛ is the singular value decompositionA = UΣV T of A with Σ = Λ and
U = V = S. Recall that the eigenvalues in the Schur decomposition can be arranged in any desired order along the
diagonal. ∆

Theorem 5.4.4 A real, symmetric matrix is positive semidefinite iff all its eigenvalues are nonnegative. It is positive
definite iff all its eigenvalues are positive.

Proof. Theorem 5.4.3 implies one of the two directions: IfA is real, symmetric, and positive semidefinite, then its
eigenvalues are nonnegative. If the proof of that theorem is repeated with the strict inequality, we also obtain that ifA
is real, symmetric, and positive definite, then its eigenvalues are positive.

Conversely, we show that if all eigenvaluesλ of a real and symmetric matrixA are positive (nonnegative) thenA
is positive definite (semidefinite). To this end, letx be any nonzero vector. Since real and symmetric matrices haven
orthonormal eigenvectors (theorem 5.4.2), we can use these eigenvectorss1, . . . , sn as an orthonormal basis forRn,
and write

x = c1s1 + . . . + cnsn

with
ci = xT si .

But then

xT Ax = xT A(c1s1 + . . . + cnsn) = xT (c1As1 + . . . + cnAsn)
= xT (c1λ1s1 + . . . + cnλnsn) = c1λ1xT s1 + . . . + cnλnxT sn

= λ1c
2
1 + . . . + λnc2

n > 0 (or ≥ 0)

because theλi are positive (nonnegative) and not allci can be zero. SincexT Ax > 0 (or≥ 0) for every nonzerox, A
is positive definite (semidefinite). ∆

Theorem 5.4.3 establishes one connection between eigenvalues/vectors and singular values/vectors: for symmetric,
positive definite matrices, the concepts coincide. This result can be used to introduce a less direct link, but for arbitrary
matrices.

Lemma 5.4.5 AT A is positive semidefinite.
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Proof. For any nonzerox we can writexT AT Ax = ‖Ax‖2 ≥ 0. ∆

Theorem 5.4.6 The eigenvalues ofAT A with m ≥ n are the squares of the singular values ofA; the eigenvectors of
AT A are the right singular vectors ofA. Similarly, form ≤ n, the eigenvalues ofAAT are the squares of the singular
values ofA, and the eigenvectors ofAAT are the left singular vectors ofA.

Proof. If m ≥ n andA = UΣV T is the SVD ofA, we have

AT A = V ΣUT UΣV T = V Σ2V T

which is in the required format to be a (diagonal) Schur decomposition withS = V andT = Λ = Σ2. Similarly, for
m ≤ n,

AAT = UΣV T V ΣUT = UΣ2UT

is a Schur decomposition withS = U andT = Λ = Σ2. ∆

We have seen that important classes of matrices admit a full set of orthonormal eigenvectors. The theorem below
characterizes the class ofall matrices with this property, that is, the class of all normal matrices. To prove the theorem,
we first need a lemma.

Lemma 5.4.7 If for an n× n matrixB we haveBBH = BHB, then for everyi = 1, . . . , n, the norm of thei-th row
of B equals the norm of itsi-th column.

Proof. FromBBH = BHB we deduce

‖Bx‖2 = xHBHBx = xHBBHx = ‖BHx‖2 . (5.13)

If x = ei, thei-th column of then × n identity matrix,Bei is thei-th column ofB, andBHei is thei-th column of
BH , which is the conjugate of thei-th row ofB. Since conjugation does not change the norm of a vector, the equality
(5.13) implies that thei-th column ofB has the same norm as thei-th row ofB. ∆

Theorem 5.4.8 Ann× n matrix is normal if an only if it commutes with its Hermitian:

AAH = AHA .

Proof. Let A = STSH be the Schur decomposition ofA. Then,

AAH = STSHSTHSH = STTHSH and AHA = STHSHSTSH = STHTSH .

BecauseS is invertible (even unitary), we haveAAH = AHA if and only if TTH = THT .
However, a triangular matrixT for which TTH = THT must be diagonal. In fact, from the lemma, the norm of

the i-th row of T is equal to the norm of itsi-th column. Leti = 1. Then, the first column ofT has norm|t11|. The
first row has first entryt11, so the only way that its norm can be|t11| is for all other entries in the first row to be zero.
We now proceed throughi = 2, . . . , n, and reason similarly to conclude thatT must be diagonal.

The converse is also obviously true: ifT is diagonal, thenTTH = THT . Thus,AAH = AHA if and only if T is
diagonal, that is, if and only ifA can be diagonalized by a unitary similarity transformation. This is the definition of a
normal matrix. ∆



5.4. EIGENVALUES/VECTORS AND SINGULAR VALUES/VECTORS 67

Corollary 5.4.9 A triangular, normal matrix must be diagonal.

Proof. We proved this in the proof of theorem 5.4.8. ∆

Checking thatAHA = AAH is much easier than computing eigenvectors, so theorem 5.4.8 is a very useful
characterization of normal matrices. Notice that Hermitian (and therefore also real symmetric) matrices commute
trivially with their Hermitians, but so do, for instance, unitary (and therefore also real orthogonal) matrices:

UUH = UHU = I .

Thus, Hermitian, real symmetric, unitary, and orthogonal matrices are all normal.
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Chapter 6

Ordinary Differential Systems

In this chapter we use the theory developed in chapter 5 in order to solve systems of first-order linear differential
equations with constant coefficients. These systems have the following form:

ẋ = Ax + b(t) (6.1)

x(0) = x0 (6.2)

wherex = x(t) is ann-dimensional vector function of timet, the dot denotes differentiation, the coefficientsaij in
then× n matrixA are constant, and the vector functionb(t) is a function of time. The equation (6.2), in whichx0 is
a known vector, defines theinitial valueof the solution.

First, we show thatscalardifferential equations of order greater than one can be reduced tosystemsof first-order
differential equations. Then, in section 6.2, we recall a general result for the solution of first-order differential systems
from the elementary theory of differential equations. In section 6.3, we make this result more specific by showing
that the solution to a homogeneous system is a linear combination of exponentials multiplied by polynomials int.
This result is based on the Schur decomposition introduced in chapter 5, which is numerically preferable to the more
commonly used Jordan canonical form. Finally, in sections 6.4 and 6.5, we set up and solve a particular differential
system as an illustrative example.

6.1 Scalar Differential Equations of Order Higher than One

The first-order system (6.1) subsumes also the case of a scalar differential equation of ordern, possibly greater than 1,

dny

dtn
+ cn−1

dn−1y

dtn−1
+ . . . + c1

dy

dt
+ c0y = b(t) . (6.3)

In fact, such an equation can be reduced to a first-order system of the form (6.1) by introducing then-dimensional
vector

x =




x1

...
xn


 =




y
dy
dt
...

dn−1y
dtn−1


 .

With this definition, we have

diy

dti
= xi+1 for i = 0, . . . , n− 1

dny

dtn
=

dxn

dt
,

69



70 CHAPTER 6. ORDINARY DIFFERENTIAL SYSTEMS

andx satisfies the additionaln− 1 equations

xi+1 =
dxi

dt
(6.4)

for i = 1, . . . , n − 1. If we write the original system (6.3) together with then − 1 differential equations (6.4), we
obtain the first-order system

ẋ = Ax + b(t)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. ..
...

0 0 0 · · · 1
−c0 −c1 −c2 · · · −cn−1




is the so-calledcompanion matrixof (6.3) and

b(t) =




0
0
...
0

b(t)




.

6.2 General Solution of a Linear Differential System

We know from the general theory of differential equations that a general solution of system (6.1) with initial condition
(6.2) is given by

x(t) = xh(t) + xp(t)

wherexh(t) is the solution of the homogeneous system

ẋ = Ax

x(0) = x0

andxp(t) is a particular solution of

ẋ = Ax + b(t)
x(0) = 0 .

The two solution componentsxh andxp can be written by means of thematrix exponential, introduced in the following.
For the scalar exponentialeλt we can write a Taylor series expansion

eλt = 1 +
λt

1!
+

λ2t2

2!
+ · · · =

∞∑

j=0

λjtj

j!
.

Usually1, in calculus classes, the exponential is introduced by other means, and the Taylor series expansion above is
proven as a property.

For matrices, the exponentialeZ of a matrixZ ∈ Rn×n is insteaddefinedby the infinite series expansion

eZ = I +
Z

1!
+

Z2

2!
+ · · · =

∞∑

j=0

Zj

j!
.

1Not always. In some treatments, the exponential isdefinedthrough its Taylor series.



6.2. GENERAL SOLUTION OF A LINEAR DIFFERENTIAL SYSTEM 71

HereI is then× n identity matrix, and the general termZj/j! is simply the matrixZ raised to thejth power divided
by the scalarj!. It turns out that this infinite sum converges (to ann×n matrix which we write aseZ) for every matrix
Z. SubstitutingZ = At gives

eAt = I +
At

1!
+

A2t2

2!
+

A3t3

3!
+ · · · =

∞∑

j=0

Ajtj

j!
. (6.5)

Differentiating both sides of (6.5) gives

deAt

dt
= A +

A2t

1!
+

A3t2

2!
+ · · ·

= A

(
I +

At

1!
+

A2t2

2!
+ · · ·

)

deAt

dt
= AeAt.

Thus, for any vectorw, the functionxh(t) = eAtw satisfies the homogeneous differential system

ẋh = Axh .

By using the initial values (6.2) we obtainw = x0, and

xh(t) = eAtx(0) (6.6)

is a solution to the differential system (6.1) withb(t) = 0 and initial values (6.2). It can be shown that this solution is
unique.

From the elementary theory of differential equations, we also know that a particular solution to the nonhomoge-
neous (b(t) 6= 0) equation (6.1) is given by

xp(t) =
∫ t

0

eA(t−s) b(s) ds .

This is easily verified, since by differentiating this expression forxp we obtain

ẋp = AeAt

∫ t

0

e−As b(s) ds + eAt e−At b(t) = Axp + b(t) ,

soxp satisfies equation (6.1).
In summary, we have the following result.

The solution to
ẋ = Ax + b(t) (6.7)

with initial value
x(0) = x0 (6.8)

is
x(t) = xh(t) + xp(t) (6.9)

where
xh(t) = eAtx(0) (6.10)

and

xp(t) =
∫ t

0

eA(t−s) b(s) ds . (6.11)
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Since we now have a formula for the general solution to a linear differential system, we seem to have all we need.
However, we do not know how to compute the matrix exponential. The naive solution to use the definition (6.5)
requires too many terms for a good approximation. As we have done for the SVD and the Schur decomposition, we
will only point out that several methods exist for computing a matrix exponential, but we will not discuss how this is
done2. In a fundamental paper on the subject,Nineteen dubious ways to compute the exponential of a matrix(SIAM
Review, vol. 20, no. 4, pp. 801-36), Cleve Moler and Charles Van Loan discuss a large number of different methods,
pointing out that no one of them is appropriate for all situations. A full discussion of this matter is beyond the scope
of these notes.

When the matrixA is constant, as we currently assume, we can be much more specific about the structure of the
solution (6.9) of system (6.7), and particularly so about the solutionxh(t) to the homogeneous part. Specifically, the
matrix exponential (6.10) can be written as a linear combination, with constant vector coefficients, of scalar expo-
nentials multiplied by polynomials. In the general theory of linear differential systems, this is shown via the Jordan
canonical form. However, in the paper cited above, Moler and Van Loan point out that the Jordan form cannot be
computed reliably, and small perturbations in the data can change the results dramatically. Fortunately, a similar result
can be found through the Schur decomposition introduced in chapter 5. The next section shows how to do this.

6.3 Structure of the Solution

For the homogeneous caseb(t) = 0, consider the first order system of linear differential equations

ẋ = Ax (6.12)

x(0) = x0 . (6.13)

Two cases arise: eitherA admitsn distinct eigenvalues, or is does not. In chapter 5, we have seen that if (but not only
if) A hasn distinct eigenvalues then it hasn linearly independent eigenvectors (theorem 5.1.1), and we have shown
how to findxh(t) by solving an eigenvalue problem. In section 6.3.1, we briefly review this solution. Then, in section
6.3.2, we show how to compute the homogeneous solutionxh(t) in the extreme case of ann × n matrix A with n
coincidenteigenvalues.

To be sure, we have seen that matrices with coincident eigenvalues can still have a full set of linearly independent
eigenvectors (see for instance the identity matrix). However, the solution procedure we introduce in section 6.3.2 for
the case ofn coincident eigenvalues can be applied regardless to how many linearly independent eigenvectors exist.
If the matrix has a full complement of eigenvectors, the solution obtained in section 6.3.2 is the same as would be
obtained with the method of section 6.3.1.

Once these two extreme cases (nondefective matrix or all-coincident eigenvalues) have been handled, we show a
general procedure in section 6.3.3 for solving a homogeneous or nonhomogeneous differential system for any, square,
constant matrixA, defective or not. This procedure is based on backsubstitution, and produces a result analogous
to that obtained via Jordan decomposition for the homogeneous partxh(t) of the solution. However, since it is
based on the numerically sound Schur decomposition, the method of section 6.3.3 is superior in practice. For a
nonhomogeneous system, the procedure can be carried out analytically if the functions in the right-hand side vector
b(t) can be integrated.

6.3.1 A is Not Defective

In chapter 5 we saw how to find the homogeneous partxh(t) of the solution whenA has a full set ofn linearly
independent eigenvectors. This result is briefly reviewed in this section for convenience.3

If A is not defective, then it hasn linearly independent eigenvectorsq1, . . . , qn with corresponding eigenvalues
λ1, . . . , λn. Let

Q =
[

q1 · · · qn

]
.

2In Matlab,expm(A) is the matrix exponential ofA.
3Parts of this subsection and of the following one are based on notes written by Scott Cohen.
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This square matrix is invertible because its columns are linearly independent. SinceAqi = λiqi, we have

AQ = QΛ, (6.14)

whereΛ = diag(λ1, . . . , λn) is a square diagonal matrix with the eigenvalues ofA on its diagonal. Multiplying both
sides of (6.14) byQ−1 on the right, we obtain

A = QΛQ−1. (6.15)

Then, system (6.12) can be rewritten as follows:

ẋ = Ax

ẋ = QΛQ−1x

Q−1ẋ = ΛQ−1x

ẏ = Λy, (6.16)

wherey = Q−1x. The last equation (6.16) representsn uncoupled, homogeneous, differential equationsẏi = λiyi.
The solution is

yh(t) = eΛty(0),

where
eΛt = diag(eλ1t, . . . , eλnt).

Using the relationx = Qy, and the consequent relationy(0) = Q−1x(0), we see that the solution to the homogeneous
system (6.12) is

xh(t) = QeΛtQ−1x(0).

If A is normal, that is, if it hasn orthonormal eigenvectorsq1, . . . qn, thenQ is replaced by the Hermitian matrix
S =

[
s1 · · · sn

]
, Q−1 is replaced bySH , and the solution to (6.12) becomes

xh(t) = SeΛtSHx(0).

6.3.2 A Hasn Coincident Eigenvalues

WhenA = QΛQ−1, we derived that the solution to (6.12) isxh(t) = QeΛtQ−1x(0). Comparing with (6.6), it should
be the case that

eQ(Λt)Q−1
= QeΛtQ−1.

This follows easily from the definition ofeZ and the fact that(Q(Λt)Q−1)j = Q(Λt)jQ−1. Similarly, if A = SΛSH ,
whereS is Hermitian, then the solution to (6.12) isxh(t) = SeΛtSHx(0), and

eS(Λt)SH

= SeΛtSH .

How can we compute the matrix exponential in the extreme case in whichA hasn coincident eigenvalues, regard-
less of the number of its linearly independent eigenvectors? In any case,A admits a Schur decomposition

A = STSH

(theorem 5.3.2). We recall thatS is a unitary matrix andT is upper triangular with the eigenvalues ofA on its diagonal.
Thus we can writeT as

T = Λ + N,

whereΛ is diagonal andN is strictly upper triangular. The solution (6.6) in this case becomes

xh(t) = eS(Tt)SH

x(0) = SeTtSHx(0) = SeΛt+NtSHx(0).
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Thus we can compute (6.6) if we can computeeTt = eΛt+Nt. This turns out to be almost as easy as computingeΛt

when the diagonal matrixΛ is a multiple of the identity matrix:

Λ = λ I

that is, when all the eigenvalues ofA coincide. In fact, in this case,Λt andNt commute:

Λt Nt = λ It Nt = λtNt = Nt λt = Ntλ It = Nt Λt .

It can be shown that if two matricesZ1 andZ2 commute, that is if

Z1Z2 = Z2Z1 ,

then
eZ1+Z2 = eZ1eZ2 = eZ2eZ1 .

Thus, in our case, we can write
eΛt+Nt = eΛteNt.

We already know how to computeeΛt, so it remains to show how to computeeNt. The fact thatNt is strictly upper
triangular makes the computation of this matrix exponential much simpler than for a general matrixZ.

Suppose, for example, thatN is 4× 4. ThenN has three nonzero superdiagonals,N2 has two nonzero superdiag-
onals,N3 has one nonzero superdiagonal, andN4 is the zero matrix:

N =




0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


 → N2 =




0 0 ∗ ∗
0 0 0 ∗
0 0 0 0
0 0 0 0


 →

N3 =




0 0 0 ∗
0 0 0 0
0 0 0 0
0 0 0 0


 → N4 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

In general, for a strictly upper triangularn× n matrix, we haveN j = 0 for all j ≥ n (i.e.,N is nilpotent of ordern).
Therefore,

eNt =
∞∑

j=0

N jtj

j!
=

n−1∑

j=0

N jtj

j!

is simply a finite sum, and the exponential reduces to a matrix polynomial.
In summary, the general solution to the homogeneous differential system (6.12) with initial value (6.13) when the

n× n matrixA hasn coincident eigenvalues is given by

xh(t) = SeΛt
n−1∑

j=0

N jtj

j!
SHx0 (6.17)

where
A = S(Λ + N)SH

is the Schur decomposition ofA,
Λ = λ I

is a multiple of the identity matrix containing the coincident eigenvalues ofA on its diagonal, andN is strictly upper
triangular.
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6.3.3 The General Case

We are now ready to solve the linear differential system

ẋ = Ax + b(t) (6.18)

x(0) = x0 (6.19)

in the general case of a constant matrixA, defective or not, with arbitraryb(t). In fact, letA = STSH be the Schur
decomposition ofA, and consider the transformed system

ẏ(t) = Ty(t) + c(t) (6.20)

where

y(t) = SHx(t) and c(t) = SHb(t) . (6.21)

The triangular matrixT can always be written in the following form:

T =




T11 · · · · · · T1k

0 T22 · · · T2k

...
. . .

...
0 · · · 0 Tkk




where the diagonal blocksTii for i = 1, . . . , k are of sizeni×ni (possibly1×1) and contain all-coincident eigenvalues.
The remaining nonzero blocksTij with i < j can be in turn bundled into matrices

Ri =
[

Ti,i+1 · · · Ti,k

]

that contain everything to the right of the correspondingTii. The vectorc(t) can be partitioned correspondingly as
follows

c(t) =




c1(t)
...

ck(t)




whereci hasni entries, and the same can be done for

y(t) =




y1(t)
...

yk(t)




and for the initial values

y(0) =




y1(0)
...

yk(0)


 .

The triangular system (6.20) can then be solved by backsubstitution as follows:

for i = k down to1
if i < k

di(t) = Ri[yi+1(t), . . . , yk(t)]T

else
di(t) = 0 (annk-dimensional vector of zeros)

end
Tii = λi I + Ni (diagonal and strictly upper-triangular part ofTii)

yi(t) = eλiIt
∑ni−1

j=0
Nj

i
tj

j! yi(0) +
∫ t

0

(
eλiI(t−s)

∑ni−1
j=0

Nj
i
(t−s)j

j!

)
(ci(s) + di(s)) ds

end.
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In this procedure, the expression foryi(t) is a direct application of equations (6.9), (6.10), (6.11), and (6.17) with
S = I. In the general case, the applicability of this routine depends on whether the integral in the expression foryi(t)
can be computed analytically. This is certainly the case whenb(t) is a constant vectorb, because then the integrand is
a linear combination of exponentials multiplied by polynomials int− s, which can be integrated by parts.

The solutionx(t) for the original system (6.18) is then

x(t) = Sy(t) .

As an illustration, we consider a very small example, the2× 2 homogeneous, triangular case,
[

ẏ1

ẏ2

]
=

[
t11 t12
0 t22

] [
y1

y2

]
. (6.22)

Whent11 = t22 = λ, we obtain

y(t) = eλIt

[
1 t12t
0 1

]
y(0) .

In scalar form, this becomes

y1(t) = (y1(0) + t12y2(0) t) eλt

y2(t) = y2(0) eλt ,

and it is easy to verify that this solution satisfies the differential system (6.22).
Whent11 = λ1 6= t22 = λ2, we could solve the system by finding the eigenvectors ofT , since we know that in this

case two linearly independent eigenvectors exist (theorem 5.1.1). Instead, we apply the backsubstitution procedure
introduced in this section. The second equation of the system,

ẏ2(t) = t22y2

has solution
y2(t) = y2(0) eλ2t .

We then have
d1(t) = t12y2(t) = t12y2(0) eλ2t

and

y1(t) = y1(0)eλ1t +
∫ t

0

eλ1(t−s)d1(s) ds

= y1(0)eλ1t + t12y2(0) eλ1t

∫ t

0

e−λ1seλ2s ds

= y1(0)eλ1t + t12y2(0) eλ1t

∫ t

0

e(λ2−λ1)s ds

= y1(0)eλ1t +
t12y2(0)
λ2 − λ1

eλ1t(e(λ2−λ1)t − 1)

= y1(0)eλ1t +
t12y2(0)
λ2 − λ1

(eλ2t − eλ1t)

Exercise:verify that this solution satisfies both the differential equation (6.22) and the initial value equationy(0) = y0.
Thus, the solutions to system (6.22) fort11 = t22 and fort11 6= t22 have different forms. Whiley2(t) is the same

in both cases, we have

y1(t) = y1(0) eλt + t12y2(0) t eλt if t11 = t22

y1(t) = y1(0)eλ1t +
t12y2(0)
λ2 − λ1

(eλ2t − eλ1t) if t11 6= t22 .
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rest position
of mass 1

rest position
of mass 2

2
v

1
v

1

2

2

1

3

Figure 6.1: A system of masses and springs. In the absence of external forces, the two masses would assume the
positions indicated by the dashed lines.

This would seem to present numerical difficulties whent11 ≈ t22, because the solution would suddenly switch
from one form to the other as the difference betweent11 andt22 changes from about zero to exactly zero or viceversa.
This, however, is not a problem. In fact,

lim
λ1→λ

eλt − eλ1t

λ− λ1
= t eλt ,

and the transition between the two cases is smooth.

6.4 A Concrete Example

In this section we set up and solve a more concrete example of a system of differential equations. The initial system
has two second-order equations, and is transformed into a first-order system with four equations. The4× 4 matrix of
the resulting system has an interesting structure, which allows finding eigenvalues and eigenvectors analytically with a
little trick. The point of this section is to show how to transform the complex formal solution of the differential system,
computed with any of the methods described above, into a real solution in a form appropriate to the problem at hand.

Consider the mechanical system in figure 6.1. Suppose that we want to study the evolution of the system over time.
Since forces are proportional to accelerations, because of Newton’s law, and since accelerations are second derivatives
of position, the new equations are differential. Because differentiation occurs only with respect to one variable, time,
these areordinarydifferential equations, as opposed to partial.

In the following we write the differential equations that describe this system. Two linear differential equations of
the second order4 result. We will then transform these into four linear differential equations of the first order.

By Hooke’s law, the three springs exert forces that are proportional to the springs’ elongations:

f1 = c1v1

f2 = c2(v2 − v1)

4Recall that the order of a differential equation is the highest degree of derivative that appears in it.
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f3 = −c3v2

where theci are the positive spring constants (in newtons per meter).
The accelerations of masses 1 and 2 (springs are assumed to be massless) are proportional to their accelerations,

according to Newton’s second law:

m1v̈1 = −f1 + f2 = −c1v1 + c2(v2 − v1) = −(c1 + c2)v1 + c2v2

m2v̈2 = −f2 + f3 = −c2(v2 − v1)− c3v2 = c2v1 − (c2 + c3)v2

or, in matrix form,
v̈ = Bv (6.23)

where

v =
[

v1

v2

]
and B =

[ − c1+c2
m1

c2
m1

c2
m2

− c2+c3
m2

]
.

We also assume that initial conditions

v(0) and v̇(0) (6.24)

are given, which specify positions and velocities of the two masses at timet = 0.
To solve the second-order system (6.23), we will first transform it to a system of four first-order equations. As

shown in the introduction to this chapter, the trick is to introduce variables to denote the first-order derivatives ofv, so
that second-order derivatives ofv are first-order derivatives of the new variables. For uniformity, we define four new
variables

u =




u1

u2

u3

u4


 =




v1

v2

v̇1

v̇2


 (6.25)

so that

u3 = v̇1 and u4 = v̇2 ,

while the original system (6.23) becomes [
u̇3

u̇4

]
= B

[
u1

u2

]
.

We can now gather these four first-order differential equations into a single system as follows:

u̇ = Au (6.26)

where

A =




0 0
0 0

1 0
0 1

B
0 0
0 0


 .

Likewise, the initial conditions (6.24) are replaced by the (known) vector

u(0) =
[

v(0)
v̇(0)

]
.

In the next section we solve equation (6.26).
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6.5 Solution of the Example

Not all matrices have a full set of linearly independent eigenvectors. With the system of springs in figure 6.1, however,
we are lucky. The eigenvalues ofA are solutions to the equation

Ax = λx , (6.27)

where we recall that

A =
[

0 I
B 0

]
and B =

[ − c1+c2
m1

c2
m1

c2
m2

− c2+c3
m2

]
.

Here, the zeros inA are2× 2 matrices of zeros, andI is the2× 2 identity matrix. If we partition the vectorx into its
upper and lower halvesy andz,

x =
[

y
z

]
,

we can write

Ax =
[

0 I
B 0

] [
y
z

]
=

[
z

By

]

so that the eigenvalue equation (6.27) can be written as the following pair of equations:

z = λy (6.28)

By = λz ,

which yields

By = µy with µ = λ2 .

In other words, the eigenvalues ofA are the square roots of the eigenvalues ofB: if we denote the two eigenvalues of
B asµ1 andµ2, then the eigenvalues ofA are

λ1 =
√

µ1 λ2 = −√µ1 λ3 =
√

µ2 λ4 = −√µ2 .

The eigenvaluesµ1 andµ2 of B are the solutions of

det(B − µI) =
(

c1 + c2

m1
+ µ

)(
c2 + c3

m2
+ µ

)
− c2

2

m1m2
= µ2 + 2αµ + β = 0

where

α =
1
2

(
c1 + c2

m1
+

c2 + c3

m2

)
and β =

c1c2 + c1c3 + c2c3

m1m2

are positive constants that depend on the elastic properties of the springs and on the masses. We then obtain

µ1,2 = −α± γ ,

where

γ =
√

α2 − β =

√
1
4

(
c1 + c2

m1
− c2 + c3

m2

)2

+
c2
2

m1m2
.

The constantγ is real because the radicand is nonnegative. We also have thatα ≥ γ, so that the two solutionsµ1,2 are
real and negative, and the four eigenvalues ofA,

λ1 =
√−α + γ , λ2 = −√−α + γ , (6.29)

λ3 =
√−α− γ , λ4 = −√−α− γ (6.30)
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come in nonreal, complex-conjugate pairs. This is to be expected, since our system of springs obviously exhibits an
oscillatory behavior.

Also the eigenvectors ofA can be derived from those ofB. In fact, from equation (6.28) we see that ify is an
eigenvector ofB corresponding to eigenvalueµ = λ2, then there are two corresponding eigenvectors forA of the
form

x =
[

y
±λy

]
. (6.31)

The eigenvectors ofB are the solutions of

(B − (−α± γ)I)y = 0 . (6.32)

Since±(−α± γ) are eigenvalues ofB, the determinant of this equation is zero, and the two scalar equations in (6.32)
must be linearly dependent. The first equation reads

−
(

c1 + c2

m1
− α± γ

)
y1 +

c2

m1
y2 = 0

and is obviously satisfied by any vector of the form

y = k

[ c2
m1

c1+c2
m1

− α± γ

]

wherek is an arbitrary constant. Fork 6= 0, y denotes the two eigenvectors ofB, and from equation (6.31) the four
eigenvectors ofA are proportional to the four columns of the following matrix:

Q =




c2
m1

c2
m1

c2
m1

c2
m1

a + λ2
1 a + λ2

2 a + λ2
3 a + λ2

4

λ1
c2
m1

λ2
c2
m1

λ3
c2
m1

λ4
c2
m1

λ1

(
a + λ2

1

)
λ2

(
a + λ2

2

)
λ3

(
a + λ2

3

)
λ4

(
a + λ2

4

)


 (6.33)

where
a =

c1 + c2

m1
.

The general solution to the first-order differential system (6.26) is then given by equation (6.17). Since we just found
four distinct eigenvectors, however, we can write more simply

u(t) = QeΛtQ−1u(0) (6.34)

where

Λ =




λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


 .

In these expressions, the values ofλi are given in equations (6.30), andQ is in equation (6.33).
Finally, the solution to the original, second-order system (6.23) can be obtained from equation (6.25) by noticing

thatv is equal to the first two components ofu.
This completes the solution of our system of differential equations. However, it may be useful to add some

algebraic manipulation in order to show that the solution is indeed oscillatory. As we see in the following, the masses’
motions can be described by the superposition of two sinusoids whose frequencies depend on the physical constants
involved (masses and spring constants). The amplitudes and phases of the sinusoids, on the other hand, depend on the
initial conditions.

To simplify our manipulation, we note that

u(t) = QeΛtw ,
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where we defined
w = Q−1u(0) . (6.35)

We now leave the constants inw unspecified, and derive the general solutionv(t) for the original, second-order
problem. Numerical values for the constants can be found from the initial conditionsu(0) by equation (6.35). We
have

v(t) = Q(1 : 2, :)eΛtw ,

whereQ(1 : 2, :) denotes the first two rows ofQ. Since

λ2 = −λ1 and λ4 = −λ3

(see equations (6.30)), we have
Q(1 : 2, :) =

[
q1 q1 q2 q2

]

where we defined

q1 =
[ c2

m1
c1+c2

m1
+ λ2

1

]
and q2 =

[ c2
m1

c1+c2
m1

+ λ2
3

]
.

Thus, we can write
v(t) = q1

(
k1e

λ1t + k2e
−λ1t

)
+ q2

(
k3e

λ3t + k4e
−λ3t

)
.

Since theλs are imaginary butv(t) is real, theki must come in complex-conjugate pairs:

k1 = k∗2 and k3 = k∗4 . (6.36)

In fact, we have
v(0) = q1(k1 + k2) + q2(k3 + k4)

and from the derivative

v̇(t) = q1λ1

(
k1e

λ1t − k2e
−λ1t

)
+ q2λ3

(
k3e

λ3t − k4e
−λ3t

)

we obtain
v̇(0) = q1λ1(k1 − k2) + q2λ3(k3 − k4) .

Since the vectorsqi are independent (assuming that the massc2 is nonzero), this means that

k1 + k2 is real k1 − k2 is purely imaginary

k3 + k4 is real k3 − k4 is purely imaginary,

from which equations (6.36) follow.
Finally, by using the relation

ejx + e−jx

2
= cos x ,

and simple trigonometry we obtain

v(t) = q1A1 cos(ω1t + φ1) + q2A2 cos(ω2t + φ2)

where

ω1 =
√

α− γ =

√√√√1
2
(a + b)−

√
1
4
(a− b)2 +

c2
2

m1m2

ω2 =
√

α + γ =

√√√√1
2
(a + b) +

√
1
4
(a− b)2 +

c2
2

m1m2
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and

a =
c1 + c2

m1
, b =

c2 + c3

m2
.

Notice that these two frequencies depend only on the configuration of the system, and not on the initial conditions.
The amplitudesAi and phasesφi, on the other hand, depend on the constantski as follows:

A1 = 2|k1| , A2 = 2|k3|
φ1 = arctan2(Im(k1), Re(k1)) φ2 = arctan2(Im(k3), Re(k3))

whereRe, Im denote the real and imaginary part and where the two-argument functionarctan2 is defined as follows
for (x, y) 6= (0, 0)

arctan2(y, x) =





arctan( y
x ) if x > 0

π + arctan( y
x ) if x < 0

π
2 if x = 0 andy > 0
−π

2 if x = 0 andy < 0

and is undefined for(x, y) = (0, 0). This function returns the arctangent ofy/x (notice the order of the arguments) in
the proper quadrant, and extends the function by continuity along they axis.

The two constantsk1 andk3 can be found from the given initial conditionsv(0) andv̇(0) from equations (6.35)
and (6.25).



Chapter 7

Stochastic State Estimation

Perhaps the most important part of studying a problem in robotics or vision, as well as in most other sciences, is to
determine a good model for the phenomena and events that are involved. For instance, studying manipulation requires
defining models for how a robot arm can move and for how it interacts with the world. Analyzing image motion
implies defining models for how points move in space and how this motion projects onto the image. When motion
is involved, as is very often the case, models take on frequently the form ofdynamic systems. A dynamic system
is a mathematical description of a quantity that evolves over time. The theory of dynamic systems is both rich and
fascinating. Although in this chapter we will barely scratch its surface, we will consider one of its most popular and
useful aspects, the theory of state estimation, in the particular form ofKalman filtering. To this purpose, an informal
definition of a dynamic system is given in the next section. The definition is then illustrated by setting up the dynamic
system equations for a simple but realistic application, that of modeling the trajectory of an enemy mortar shell. In
sections 7.3 through 7.5, we will develop the theory of the Kalman filter, and in section 7.6 we will see that the shell
can be shot down before it hits us. As discussed in section 7.7, Kalman filtering has intimate connections with the
theory of algebraic linear systems we have developed in chapters 2 and 3.

7.1 Dynamic Systems

In its most general meaning, the termsystemrefers to some physical entity on which some action is performed by
means of an inputu. The system reacts to this input and produces an outputy (see figure 7.1).

A dynamicsystem is a system whose phenomena occur over time. One often says that a systemevolves over time.
Simple examples of a dynamic system are the following:

• An electric circuit, whose input is the current in a given branch and whose output is a voltage across a pair of
nodes.

• A chemical reactor, whose inputs are the external temperature, the temperature of the gas being supplied, and
the supply rate of the gas. The output can be the temperature of the reaction product.

• A mass suspended from a spring. The input is the force applied to the mass and the output is the position of the
mass.

input outputsystem

Su y

Figure 7.1: A general system.
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In all these examples, what is input and what is output is a choice that depends on the application. Also, all the
quantities in the examples vary continuously with time. In other cases, as for instance for switching networks and
computers, it is more natural to consider time as a discrete variable. If time varies continuously, the system is said to
becontinuous; if time varies discretely, the system is said to bediscrete.

7.1.1 State

Given a dynamic system, continuous or discrete, the modeling problem is to somehow correlate inputs (causes) with
outputs (effects). The examples above suggest that the output at timet cannot be determined in general by the value
assumed by the input quantity at the same point in time. Rather, the output is the result of the entire history of the
system. An effort of abstraction is therefore required, which leads to postulating a new quantity, called thestate, which
summarizes information about the past and the present of the system. Specifically, the valuex(t) taken by the state at
time t must be sufficient to determine the output at the same point in time. Also, knowledge of bothx(t1) andu[t1,t2),
that is, of the state at timet1 and the input over the intervalt1 ≤ t < t2, must allow computing the state (and hence
the output) at timet2. For the mass attached to a spring, for instance, the state could be the position and velocity of
the mass. In fact, the laws of classical mechanics allow computing the new position and velocity of the mass at timet2
given its position and velocity at timet1 and the forces applied over the interval[t1, t2). Furthermore, in this example,
the outputy of the system happens to coincide with one of the two state variables, and is therefore always deducible
from the latter.

Thus, in a dynamic system the input affects the state, and the output is a function of the state. For a discrete
system, the way that the input changes the state at time instant numberk into the new state at time instantk + 1 can
be represented by a simple equation:

xk+1 = f(xk, uk, k)

wheref is some function that represents the change, anduk is the input at timek. Similarly, the relation between state
and output can be expressed by another function:

yk = h(xk, k) .

A discrete dynamic systemis completely described by these two equations and an initial statex0. In general, all
quantities are vectors.

For continuous systems, time does not come in quanta, so one cannot computexk+1 as a function ofxk, uk, and
k, but rather computex(t2) as a functionalφ of x(t1) and the entire inputu over the interval[t1, t2):

x(t2) = φ(x(t1), u(·), t1, t2)
whereu(·) represents the entire functionu, not just one of its values. A description of the system in terms of func-
tions, rather than functionals, can be given in the case of aregular system, for which the functionalφ is continuous,
differentiable, and with continuous first derivative. In that case, one can show that there exists a functionf such that
the statex(t) of the system satisfies the differential equation

ẋ(t) = f(x(t), u(t), t)

where the dot denotes differentiation with respect to time. The relation from state to output, on the other hand, is
essentially the same as for the discrete case:

y(t) = h(x(t), t) .

Specifying the initial statex0 completes the definition of a continuous dynamic system.

7.1.2 Uncertainty

The systems defined in the previous section are calleddeterministic, since the evolution is exactly determined once
the initial statex at time0 is known. Determinism implies that both the evolution functionf and the output function
h are known exactly. This is, however, an unrealistic state of affairs. In practice, the laws that govern a given physical
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system are known up to some uncertainty. In fact, the equations themselves are simple abstractions of a complex
reality. The coefficients that appear in the equations are known only approximately, and can change over time as a
result of temperature changes, component wear, and so forth. A more realistic model then allows for some inherent,
unresolvable uncertainty in bothf andh. This uncertainty can be represented asnoisethat perturbs the equations we
have presented so far. A discrete system then takes on the following form:

xk+1 = f(xk, uk, k) + ηk

yk = h(xk, k) + ξk

and for a continuous system

ẋ(t) = f(x(t), u(t), t) + η(t)
y(t) = h(x(t), t) + ξ(t) .

Without loss of generality, the noise distributions can be assumed to have zero mean, for otherwise the mean can be
incorporated into the deterministic part, that is, in eitherf or h. The mean may not be known, but this is a different
story: in general the parameters that enter into the definitions off andh must be estimated by some method, and the
mean perturbations are no different.

A common assumption, which is sometimes valid and always simplifies the mathematics, is thatη and ξ are
zero-mean Gaussian random variables with known covariance matricesQ andR, respectively.

7.1.3 Linearity

The mathematics becomes particularly simple when both the evolution functionf and the output functionh are linear.
Then, the system equations become

xk+1 = Fkxk + Gkuk + ηk

yk = Hkxk + ξk

for the discrete case, and

ẋ(t) = F (t)x(t) + G(t)u(t) + η(t)
y(t) = H(t)x(t) + ξ(t)

for the continuous one. It is useful to specify the sizes of the matrices involved. We assume that the inputu is a vector
inRp, the statex is inRn, and the outputy is inRm. Then, thestate propagation matrixF is n× n, theinput matrix
G is n × p, and theoutput matrixH is m × n. The covariance matrixQ of the system noiseη is n × n, and the
covariance matrix of the output noiseξ is m×m.

7.2 An Example: the Mortar Shell

In this section, the example of the mortar shell will be discussed in order to see some of the technical issues involved
in setting up the equations of a dynamic system. In particular, we consider discretization issues because the physical
system is itself continuous, but we choose to model it as a discrete system for easier implementation on a computer.

In sections 7.3 through 7.5, we consider thestate estimationproblem: given observations of the outputy over an
interval of time, we want to determine the statex of the system. This is a very important task. For instance, in the case
of the mortar shell, the state is the (initially unknown) position and velocity of the shell, while the output is a set of
observations made by a tracking system. Estimating the state then leads to enough knowledge about the shell to allow
driving an antiaircraft gun to shoot the shell down in mid-flight.

You spotted an enemy mortar installation about thirty kilometers away, on a hill that looks about 0.5 kilometers
higher than your own position. You want to track incoming projectiles with a Kalman filter so you can aim your guns
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accurately. You do not know the initial velocity of the projectiles, so you just guess some values: 0.6 kilometers/second
for the horizontal component, 0.1 kilometers/second for the vertical component. Thus, your estimate of the initial state
of the projectile is

x̂0 =




ḋ
d
ż
z


 =




−0.6
30
0.1
0.5




whered is the horizontal coordinate,z is the vertical, you are at(0, 0), and dots denote derivatives with respect to
time.

From your high-school physics, you remember that the laws of motion for a ballistic trajectory are the following:

d(t) = d(0) + ḋ(0)t (7.1)

z(t) = z(0) + ż(0)t− 1
2
gt2 (7.2)

whereg is the gravitational acceleration, equal to9.8 × 10−3 kilometers per second squared. Since you do not trust
your physics much, and you have little time to get ready, you decide to ignore air drag. Because of this, you introduce
a state update covariance matrixQ = 0.1I4, whereI4 is the4× 4 identity matrix.

All you have to track the shells is a camera pointed at the mortar that will rotate so as to keep the projectile at the
center of the image, where you see a blob that increases in size as the projectile gets closer. Thus, the aiming angle of
the camera gives you elevation information about the projectile’s position, and the size of the blob tells you something
about the distance, given that you know the actual size of the projectiles used and all the camera parameters. The
projectile’s elevation is

e = 1000
z

d
(7.3)

when the projectile is at(d, z). Similarly, the size of the blob in pixels is

s =
1000√
d2 + z2

. (7.4)

You do not have very precise estimates of the noise that corruptse ands, so you guess measurement covariances
Re = Rs = 1000, which you put along the diagonal of a2× 2 diagonal measurement covariance matrixR.

7.2.1 The Dynamic System Equation

Equations (7.1) and (7.2) are continuous. Since you are taking measurements everydt = 0.2 seconds, you want to
discretize these equations. For thez component, equation (7.2) yields

z(t + dt)− z(t) = z(0) + ż(0)(t + dt)− 1
2
g(t + dt)2 −

[
z(0) + ż(0)t− 1

2
gt2

]

= (ż(0)− gt)dt− 1
2
g(dt)2

= ż(t)dt− 1
2
g(dt)2 ,

sinceż(0)− gt = ż(t).
Consequently, ift + dt is time instantk + 1 andt is time instantk, you have

zk+1 = zk + żkdt− 1
2
g(dt)2 . (7.5)

The reasoning for the horizontal componentd is the same, except that there is no acceleration:

dk+1 = dk + ḋkdt . (7.6)
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Equations (7.5) and (7.6) can be rewritten as a single system update equation

xk+1 = Fxk + Gu

where

xk =




ḋk

dk

żk

zk




is the state, the4 × 4 matrix F depends ondt, the control scalaru is equal to−g, and the4 × 1 control matrixG
depends ondt. The two matricesF andG are as follows:

F =




1 0 0 0
dt 1 0 0
0 0 1 0
0 0 dt 1


 G =




0
0
dt
−dt2

2


 .

7.2.2 The Measurement Equation

The two nonlinear equations (7.3) and (7.4) express the available measurements as a function of the true values of the
projectile coordinatesd andz. We want to replace these equations with linear approximations. To this end, we develop
both equations as Taylor series around the current estimate and truncate them after the linear term. From the elevation
equation (7.3), we have

ek = 1000
zk

dk
≈ 1000

[
ẑk

d̂k

+
zk − ẑk

d̂k

− ẑk

d̂2
k

(dk − d̂k)

]
,

so that after simplifying we can redefine the measurement to be the discrepancy from the estimated value:

e′k = ek − 1000
ẑk

d̂k

≈ 1000(
zk

d̂k

− ẑk

d̂2
k

dk) . (7.7)

We can proceed similarly for equation (7.4):

sk =
1000√
d2

k + z2
k

≈ 1000√
d̂2

k + ẑ2
k

− 1000d̂k

(d̂2
k + ẑ2

k)3/2
(dk − d̂k)− 1000ẑk

(d̂2
k + ẑ2

k)3/2
(zk − ẑk)

and after simplifying:

s′k = sk − 2000√
d̂2 + ẑ2

≈ −1000

[
d̂k

(d̂2
k + ẑ2

k)3/2
dk +

ẑk

(d̂2
k + ẑ2

k)3/2
zk

]
. (7.8)

The two measurementss′k ande′k just defined can be collected into a single measurement vector

yk =
[

s′k
e′k

]
,

and the two approximate measurement equations (7.7) and (7.8) can be written in the matrix form

yk = Hkxk (7.9)

where the measurement matrixHk depends on the current state estimatex̂k:

Hk = −1000


 0 d̂k

(d̂2
k
+ẑ2

k)
3/2 0 ẑk

(d̂2
k
+ẑ2

k)
3/2

0 ẑk

d̂2
k

0 − 1
d̂k






88 CHAPTER 7. STOCHASTIC STATE ESTIMATION

As the shell approaches us, we frantically start studying state estimation, and in particular Kalman filtering, in the
hope to build a system that lets us shoot down the shell before it hits us. The next few sections will be read under this
impending threat.

Knowing the model for the mortar shell amounts to knowing the laws by which the object moves and those that
relate the position of the projectile to our observations. So what else is there left to do? From the observations, we
would like to know where the mortar shell is right now, and perhaps predict where it will be in a few seconds, so we
can direct an antiaircraft gun to shoot down the target. In other words, we want to knowxk, the state of the dynamic
system. Clearly, knowingx0 instead is equivalent, at least when the dynamics of the system are known exactly (the
system noiseηk is zero). In fact, fromx0 we can simulate the system up until timet, thereby determiningxk as well.
Most importantly, we do not want to have all the observations before we shoot: we would be dead by then. A scheme
that refines an initial estimation of the state as new observations are acquired is called arecursive1 state estimation
system. TheKalman filter is one of the most versatile schemes for recursive state estimations. The original paper
by Kalman (R. E. Kalman, “A new approach to linear filtering and prediction problems,”Transactions of the ASME
Journal Basic Engineering, 82:34–45, 1960) is still one of the most readable treatments of this subject from the point
of view of stochastic estimation.

Even without noise, a single observationyk may not be sufficient to determine the statexk (in the example, one
observation happens to be sufficient). This is a very interesting aspect of state estimation. It is really the ensemble of
all observations that let one estimate the state, and yet observations are processed one at a time, as they become avail-
able. A classical example of this situation in computer vision is the reconstruction of three-dimensional shape from
a sequence of images. A single image is two-dimensional, so by itself it conveys no three-dimensional information.
Kalman filters exist that recover shape information from a sequence of images. See for instance L. Matthies, T. Kanade,
and R. Szeliski, “Kalman filter-based algorithms for estimating depth from image sequences,”International Journal of
Computer Vision, 3(3):209-236, September 1989; and T.J. Broida, S. Chandrashekhar, and R. Chellappa, “Recursive
3-D motion estimation from a monocular image sequence,”IEEE Transactions on Aerospace and Electronic Systems,
26(4):639–656, July 1990.

Here, we introduce the Kalman filter from the simpler point of view of least squares estimation, since we have
developed all the necessary tools in the first part of this course. The next section defines the state estimation problem
for a discrete dynamic system in more detail. Then, section 7.4 defines the essential notions of estimation theory
that are necessary to understand the quantitative aspects of Kalman filtering. Section 7.5 develops the equation of the
Kalman filter, and section 7.6 reconsiders the example of the mortar shell. Finally, section 7.7 establishes a connection
between the Kalman filter and the solution of a linear system.

7.3 State Estimation

In this section, the estimation problem is defined in some more detail. Given a discrete dynamic system

xk+1 = Fkxk + Gkuk + ηk (7.10)

yk = Hkxk + ξk (7.11)

where the system noiseηk and the measurement noiseξk are Gaussian variables,

ηk ∼ N (0, Qk)
ξk ∼ N (0, Rk) ,

as well as a (possibly completely wrong) estimatex̂0 of the initial state and an initial covariance matrixP0 of the
estimatêx0, the Kalman filter computes the optimal estimatex̂k|k at timek given the measurementsy0, . . . , yk. The
filter also computes an estimatePk|k of the covariance of̂xk|k given those measurements. In these expressions, the hat
means that the quantity is an estimate. Also, the firstk in the subscript refers to which variable is being estimated, the
second to which measurements are being used for the estimate. Thus, in general,x̂i|j is the estimate of the value that
x assumes at timei given the firstj + 1 measurementsy0, . . . , yj .

1The term “recursive” in the systems theory literature corresponds loosely to “incremental” or “iterative” in computer science.
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Figure 7.2: The update stage of the Kalman filter changes the estimate of the current system statexk to make the
prediction of the measurement closer to the actual measurementyk. Propagation then accounts for the evolution of the
system state, as well as the consequent growing uncertainty.

7.3.1 Update

The covariance matrixPk|k must be computed in order to keep the Kalman filter running, in the following sense. At
timek, just before the new measurementyk comes in, we have an estimatex̂k|k−1 of the state vectorxk based on the
previous measurementsy0, . . . , yk−1. Now we face the problem of incorporating the new measurementyk into our
estimate, that is, of transforminĝxk|k−1 into x̂k|k. If x̂k|k−1 were exact, we couldcomputethe new measurementyk

without even looking at it, through the measurement equation (7.11). Even ifx̂k|k−1 is not exact, the estimate

ŷk|k−1 = Hkx̂k|k−1

is still our best bet. Nowyk becomes available, and we can consider theresidue

rk = yk − ŷk|k−1 = yk −Hkx̂k|k−1 .

If this residue is nonzero, we probably need to correct our estimate of the statexk, so that the new prediction

ŷk|k = Hkx̂k|k

of the measurement value is closer to the measurementyk than the old prediction

ŷk|k−1 = Hkx̂k|k−1

that we made just before the new measurementyk was available.
The question however is, by how much should we correct our estimate of the state? We do not want to makeŷk|k

coincidewith yk. That would mean that we trust the new measurement completely, but that we do not trust our state
estimatêxk|k−1 at all, even if the latter was obtained through a large number of previous measurements. Thus, we
need some criterion for comparing the quality of the new measurementyk with that of our old estimatêxk|k−1 of the
state. The uncertainty about the former isRk, the covariance of the observation error. The uncertainty about the state
just before the new measurementyk becomes available isPk|k−1. Theupdatestage of the Kalman filter usesRk and
Pk|k−1 to weigh past evidence (x̂k|k−1) and new observations (yk). This stage is represented graphically in the middle
of figure 7.2. At the same time, also the uncertainty measurePk|k−1 must be updated, so that it becomes available for
the next step. Because a new measurement has been read, this uncertainty becomes usually smaller:Pk|k < Pk|k−1.

The idea is that as time goes by the uncertainty on the state decreases, while that about the measurements may
remain the same. Then, measurements count less and less as the estimate approaches its true value.
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7.3.2 Propagation

Just after arrival of the measurementyk, both state estimate and state covariance matrix have been updated as described
above. But between timek and timek + 1 both state and covariance may change. The state changes according to the
system equation (7.10), so our estimatex̂k+1|k of xk+1 giveny0, . . . , yk should reflect this change as well. Similarly,
because of the system noiseηk, our uncertainty about this estimate may be somewhat greater than one time epoch ago.
The system equation (7.10) essentially “dead reckons” the new state from the old, and inaccuracies in our model of
how this happens lead to greater uncertainty. This increase in uncertainty depends on the system noise covarianceQk.
Thus, both state estimate and covariance must bepropagatedto the new timek + 1 to yield the new state estimate
x̂k+1|k and the new covariancePk+1|k. Both these changes are shown on the right in figure 7.2.

In summary, just as the state vectorxk represents all the information necessary to describe the evolution of a
deterministic system, the covariance matrixPk|k contains all the necessary information about the probabilistic part of
the system, that is, about how both the system noiseηk and the measurement noiseξk corrupt the quality of the state
estimatêxk|k.

Hopefully, this intuitive introduction to Kalman filtering gives you an idea ofwhat the filter does, and what infor-
mation it needs to keep working. To turn these concepts into a quantitative algorithm we need some preliminaries on
optimal estimation, which are discussed in the next section. The Kalman filter itself is derived in section 7.5.

7.4 BLUE Estimators

In what sense does the Kalman filter use covariance information to produce better estimates of the state? As we will
se later, the Kalman filter computes theBest Linear Unbiased Estimate(BLUE) of the state. In this section, we see
what this means, starting with the definition of a linear estimation problem, and then considering the attributes “best”
and “unbiased” in turn.

7.4.1 Linear Estimation

Given a quantityy (theobservation) that is a known function of another (deterministic but unknown) quantityx (the
state) plus some amount of noise,

y = h(x) + n , (7.12)

the estimation problem amounts to finding a function

x̂ = L(y)

such that̂x is as close as possible tox. The functionL is called anestimator, and its valuêx given the observationsy
is called anestimate. Inverting a function is an example of estimation. If the functionh is invertible and the noise term
n is zero, thenL is the inverse ofh, no matter how the phrase “as close as possible” is interpreted. In fact, in that case
x̂ is equal tox, and any distance betweenx̂ andx must be zero. In particular, solving a square, nonsingular system

y = Hx (7.13)

is, in this somewhat trivial sense, a problem of estimation. The optimal estimator is then represented by the matrix

L = H−1

and the optimal estimate is
x̂ = Ly .

A less trivial example occurs, for a linear observation function, when the matrixH has more rows than columns,
so that the system (7.13) is overconstrained. In this case, there is usually no inverse toH, and again one must say in
what sensêx is required to be “as close as possible” tox. For linear systems, we have so far considered the criterion
that prefers a particular̂x if it makes the Euclidean norm of the vectory − Hx as small as possible. This is the
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(unweighted) least squarescriterion. In section 7.4.2, we will see that in a very precise sense ordinary least squares
solve a particular type of estimation problem, namely, the estimation problem for the observation equation (7.12) with
h a linear function andn Gaussian zero-mean noise with the indentity matrix for covariance.

An estimator is said to belinear if the functionL is linear. Notice that the observation functionh can still be
nonlinear. IfL is required to be linear buth is not, we will probably have an estimator that produces a worse estimate
than a nonlinear one. However, it still makes sense to look for the best possible linear estimator. The best estimator
for a linear observation function happens to be a linear estimator.

7.4.2 Best

In order to define what is meant by a “best” estimator, one needs to define a measure of goodness of an estimate. In
the least squares approach to solving a linear system like (7.13), this distance is defined as the Euclidean norm of the
residue vector

y−H x̂

between the left and the right-hand sides of equation (7.13), evaluated at the solutionx̂. Replacing (7.13) by a “noisy
equation”,

y = Hx + n (7.14)

does not change the nature of the problem. Even equation (7.13) has no exact solution when there are more independent
equations than unknowns, so requiring equality is hopeless. What the least squares approach is really saying is that
even at the solution̂x there is some residue

n = y−H x̂ (7.15)

and we would like to make that residue as small as possible in the sense of the Euclidean norm. Thus, an overcon-
strained system of the form (7.13) and its “noisy” version (7.14) are really the same problem. In fact, (7.14) is the
correct version, if the equality sign is to be taken literally.

The noise term, however, can be used to generalize the problem. In fact, the Euclidean norm of the residue (7.15)
treats all components (all equations in (7.14)) equally. In other words, each equation counts the same when computing
the norm of the residue. However, different equations can have noise terms of different variance. This amounts to
saying that we have reasons to prefer the quality of some equations over others or, alternatively, that we want to
enforce different equations to different degrees. From the point of view of least squares, this can be enforced by some
scaling of the entries ofn or, even, by some linear transformation of them:

n → Wn

so instead of minimizing‖n‖2 = nT n (the square is of course irrelevant when it comes to minimization), we now
minimize

‖Wn‖2 = nT R−1n

where
R−1 = WT W

is a symmetric, nonnegative-definite matrix. This minimization problem, calledweighted least squares, is only slightly
different from its unweighted version. In fact, we have

Wn = W (y−Hx) = Wy−WHx

so we are simply solving the system
Wy = WHx

in the traditional, “unweighted” sense. We know the solution from normal equations:

x̂ = ((WH)T WH)−1(WH)T Wy = (HT R−1H)−1HT R−1y .
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Interestingly, this same solution is obtained from a completely different criterion of goodness of a solutionx̂. This
criterion is a probabilistic one. We consider this different approach because it will let us show that the Kalman filter is
optimal in a very useful sense.

The new criterion is the so-calledminimum-covariancecriterion. The estimatêx of x is some function of the
measurementsy, which in turn are corrupted by noise. Thus,x̂ is a function of a random vector (noise), and is therefore
a random vector itself. Intuitively, if we estimate the same quantity many times, from measurements corrupted by
different noise samples from the same distribution, we obtain different estimates. In this sense, the estimates are
random.

It makes therefore sense to measure the quality of an estimator by requiring that its variance be as small as possible:
the fluctuations of the estimatêx with respect to the true (unknown) valuex from one estimation experiment to the
next should be as small as possible. Formally, we want to choose a linear estimatorL such that the estimateŝx = Ly
it produces minimize the followingcovariancematrix:

P = E[(x− x̂)(x− x̂)T ] .

Minimizing a matrix, however, requires a notion of “size” for matrices: how large isP? Fortunately, most inter-
esting matrix norms are equivalent, in the sense that given two different definitions‖P‖1 and‖P‖2 of matrix norm
there exist two positive scalarsα, β such that

α‖P‖1 < ‖P‖2 < β‖P‖1 .

Thus, we can pick any norm we like. In fact, in the derivations that follow, we only use properties shared by all norms,
so which norm we actually use is irrelevant. Some matrix norms were mentioned in section 3.2.

7.4.3 Unbiased

In additionto requiring our estimator to be linear and with minimum covariance, we also want it to beunbiased, in the
sense that if repeat the same estimation experiment many times we neither consistently overestimate nor consistently
underestimatex. Mathematically, this translates into the following requirement:

E[x− x̂] = 0 and E[x̂] = E[x] .

7.4.4 The BLUE

We now address the problem of finding the Best Linear Unbiased Estimator (BLUE)

x̂ = Ly

of x given thaty depends onx according to the model (7.14), which is repeated here for convenience:

y = Hx + n . (7.16)

First, we give a necessary and sufficient condition forL to be unbiased.

Lemma 7.4.1 Letn in equation (7.16) be zero mean. Then the linear estimatorL is unbiased if an only if

LH = I ,

the identity matrix.

Proof.

E[x− x̂] = E[x− Ly] = E[x− L(Hx + n)]
= E[(I − LH)x]− E[Ln] = (I −HL)E[x]
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sinceE[Ln] = LE[n] andE[n] = 0. For this to hold for allx we needI − LH = 0. ∆

And now the main result.

Theorem 7.4.2 The Best Linear Unbiased Estimator (BLUE)

x̂ = Ly

for the measurement model
y = Hx + n

where the noise vectorn has zero mean and covarianceR is given by

L = (HT R−1H)−1HT R−1

and the covariance of the estimatex̂ is

P = E[(x− x̂)(x− x̂)T ] = (HT R−1H)−1 . (7.17)

Proof. We can write

P = E[(x− x̂)(x− x̂)T ] = E[(x− Ly)(x− Ly)T ]
= E[(x− LHx− Ln)(x− LHx− Ln)T ] = E[((I − LH)x− Ln)((I − LH)x− Ln)T ]
= E[LnnT LT ] = LE[nnT ]LT = LRLT

becauseL is unbiased, so thatLH = I.
To show that

L0 = (HT R−1H)−1HT R−1 (7.18)

is the best choice, letL be any (other) linear unbiased estimator. We can trivially write

L = L0 + (L− L0)

and

P = LRLT = [L0 + (L− L0)]R[L0 + (L− L0)]T

= L0RLT
0 + (L− L0)RLT

0 + L0R(L− L0)T + (L− L0)R(L− L0)T .

From (7.18) we obtain
RLT

0 = RR−1H(HT R−1H)−1 = H(HT R−1H)−1

so that
(L− L0)RLT

0 = (L− L0)H(HT R−1H)−1 = (LH − L0H)(HT R−1H)−1 .

But L andL0 are unbiased, soLH = L0H = I, and

(L− L0)RLT
0 = 0 .

The termL0R(L− L0)T is the transpose of this, so it is zero as well. In conclusion,

P = L0RLT
0 + (L− L0)R(L− L0)T ,

the sum of two positive definite or at least semidefinite matrices. For such matrices, the norm of the sum is greater or
equal to either norm, so this expression is minimized when the second term vanishes, that is, whenL = L0.

This proves that the estimator given by (7.18) is the best, that is, that it has minimum covariance. To prove that the
covarianceP of x̂ is given by equation (7.17), we simply substituteL0 for L in P = LRLT :

P = L0RLT
0 = (HT R−1H)−1HT R−1RR−1H(HT R−1H)−1

= (HT R−1H)−1HT R−1H(HT R−1H)−1 = (HT R−1H)−1

as promised. ∆
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7.5 The Kalman Filter: Derivation

We now have all the components necessary to write the equations for the Kalman filter. To summarize, given a linear
measurement equation

y = Hx + n

wheren is a Gaussian random vector with zero mean and covariance matrixR,

n ∼ N (0, R) ,

the best linear unbiased estimatex̂ of x is
x̂ = PHT R−1y

where the matrix
P

∆= E[(x̂− x)(x̂− x)T ] = (HT R−1H)−1

is the covariance of the estimation error.
Given a dynamic system with system and measurement equations

xk+1 = Fkxk + Gkuk + ηk (7.19)

yk = Hkxk + ξk

where the system noiseηk and the measurement noiseξk are Gaussian random vectors,

ηk ∼ N (0, Qk)
ξk ∼ N (0, Rk) ,

as well as the best, linear, unbiased estimatex̂0 of the initial state with an error covariance matrixP0, the Kalman
filter computes the best, linear, unbiased estimatex̂k|k at timek given the measurementsy0, . . . , yk. The filter also
computes the covariancePk|k of the error̂xk|k − xk given those measurements. Computation occurs according to the
phases of update and propagation illustrated in figure 7.2. We now apply the results from optimal estimation to the
problem of updating and propagating the state estimates and their error covariances.

7.5.1 Update

At time k, two pieces of data are available. One is the estimatex̂k|k−1 of the statexk given measurements up to but not
includingyk. This estimate comes with its covariance matrixPk|k−1. Another way of saying this is that the estimate
x̂k|k−1 differs from the true statexk by an error termek whose covariance isPk|k−1:

x̂k|k−1 = xk + ek (7.20)

with
E[ekeT

k ] = Pk|k−1 .

The other piece of data is the new measurementyk itself, which is related to the statexk by the equation

yk = Hkxk + ξk (7.21)

with error covariance
E[ξkξT

k ] = Rk .

We can summarize this available information by grouping equations 7.20 and 7.21 into one, and packaging the error
covariances into a single, block-diagonal matrix. Thus, we have

y = Hxk + n
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where

y =
[

x̂k|k−1

yk

]
, H =

[
I

Hk

]
, n =

[
ek

ξk

]
,

and wheren has covariance

R =
[

Pk|k−1 0
0 Rk

]
.

As we know, the solution to this classical estimation problem is

x̂k|k = Pk|kHT R−1y

Pk|k = (HT R−1H)−1 .

This pair of equations represents the update stage of the Kalman filter. These expressions are somewhat wasteful,
because the matricesH andR contain many zeros. For this reason, these two update equations are now rewritten in a
more efficient and more familiar form. We have

P−1
k|k = HT R−1H

=
[

I HT
k

] [
P−1

k|k−1 0
0 R−1

k

] [
I

Hk

]

= P−1
k|k−1 + HT

k R−1
k Hk

and

x̂k|k = Pk|kHT R−1y

= Pk|k
[

P−1
k|k−1 HT

k R−1
k

] [
x̂k|k−1

yk

]

= Pk|k(P−1
k|k−1x̂k|k−1 + HT

k R−1
k yk)

= Pk|k((P−1
k|k −HT

k R−1
k Hk)x̂k|k−1 + HT

k R−1
k yk)

= x̂k|k−1 + Pk|kHT
k R−1

k (yk −Hkx̂k|k−1) .

In the last line, the difference

rk
∆= yk −Hkx̂k|k−1

is theresiduebetween the actual measurementyk and its best estimate based onx̂k|k−1, and the matrix

Kk
∆= Pk|kHT

k R−1
k

is usually referred to as theKalman gainmatrix, because it specifies the amount by which the residue must be multi-
plied (or amplified) to obtain the correction term that transforms the old estimatex̂k|k−1 of the statexk into its new
estimatêxk|k.

7.5.2 Propagation

Propagation is even simpler. Since the new state is related to the old through the system equation 7.19, and the noise
termηk is zero mean, unbiasedness requires

x̂k+1|k = Fkx̂k|k + Gkuk ,
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which is the state estimate propagation equation of the Kalman filter. The error covariance matrix is easily propagated
thanks to the linearity of the expectation operator:

Pk+1|k = E[(x̂k+1|k − xk+1)(x̂k+1|k − xk+1)T ]

= E[(Fk(x̂k|k − xk)− ηk)(Fk(x̂k|k − xk)− ηk)T ]

= FkE[(x̂k|k − xk)(x̂k|k − xk)T ]FT
k + E[ηkηT

k ]

= FkPk|kFT
k + Qk

where the system noiseηk and the previous estimation errorx̂k|k − xk were assumed to be uncorrelated.

7.5.3 Kalman Filter Equations

In summary, the Kalman filter evolves an initial estimate and an initial error covariance matrix,

x̂0|−1
∆= x̂0 andP0|−1

∆= P0 ,

both assumed to be given, by the update equations

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1)

P−1
k|k = P−1

k|k−1 + HT
k R−1

k Hk

where the Kalman gain is defined as
Kk = Pk|kHT

k R−1
k

and by the propagation equations

x̂k+1|k = Fkx̂k|k + Gkuk

Pk+1|k = FkPk|kFT
k + Qk .

7.6 Results of the Mortar Shell Experiment

In section 7.2, the dynamic system equations for a mortar shell were set up. Matlab routines available through the
class Web page implement a Kalman filter (with naive numerics) to estimate the state of that system from simulated
observations. Figure 7.3 shows the true and estimated trajectories. Notice that coincidence of the trajectories does not
imply that the state estimate is up-to-date. For this it is also necessary that any given point of the trajectory is reached
by the estimate at the same time instant. Figure 7.4 shows that the distance between estimated and true target position
does indeed converge to zero, and this occurs in time for the shell to be shot down. Figure 7.5 shows the 2-norm of the
covariance matrix over time. Notice that the covariance goes to zero only asymptotically.

7.7 Linear Systems and the Kalman Filter

In order to connect the theory of state estimation with what we have learned so far about linear systems, we now show
that estimating the initial statex0 from the firstk+1 measurements, that is, obtainingx̂0|k, amounts to solving a linear
system of equations with suitable weights for its rows.

The basic recurrence equations (7.10) and (7.11) can be expanded as follows:

yk = Hkxk + ξk = Hk(Fk−1xk−1 + Gk−1uk−1 + ηk−1) + ξk

= HkFk−1xk−1 + HkGk−1uk−1 + Hkηk−1 + ξk

= HkFk−1(Fk−2xk−2 + Gk−2uk−2 + ηk−2) + HkGk−1uk−1 + Hkηk−1 + ξk
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Figure 7.3: The true and estimated trajectories get closer to one another. Trajectories start on the right.
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Figure 7.4: The estimate actually closes in towards the target.



98 CHAPTER 7. STOCHASTIC STATE ESTIMATION

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40
norm of the state covariance matrix vs time

Figure 7.5: After an initial increase in uncertainty, the norm of the state covariance matrix converges to zero. Upwards
segments correspond to state propagation, downwards ones to state update.

= HkFk−1Fk−2xk−2 + Hk(Fk−1Gk−2uk−2 + Gk−1uk−1) +
Hk(Fk−1ηk−2 + ηk−1) + ξk

...

= HkFk−1 . . . F0x0 + Hk(Fk−1 . . . F1G0u0 + . . . + Gk−1uk−1) +
Hk(Fk−1 . . . F1η0 + . . . + ηk−1) + ξk

or in a more compact form,

yk = HkΦ(k − 1, 0)x0 + Hk

k∑

j=1

Φ(k − 1, j)Gj−1uj−1 + νk (7.22)

where

Φ(l, j) =
{

Fl . . . Fj for l ≥ j
1 for l < j

and the term

νk = Hk

k∑

j=1

Φ(k − 1, j)ηj−1 + ξk

is noise.
The key thing to notice about this somewhat intimidating expression is that for anyk it is a linear system inx0, the

initial state of the system. We can write one system like the one in equation (7.22) for every value ofk = 0, . . . ,K,
whereK is the last time instant considered, and we obtain a large system of the form

zK = ΨKx0 + gK + nK (7.23)

where

zK =




y0
...

yK



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ΨK =




H0

H1F0

...
HKΦ(K − 1, 0)




gK =




0
H1G0u0

...
HK(Φ(K − 1, 1)G0u0 + . . . + Φ(K − 1,K)GK−1uK−1)




nK =




ν0

...
νK


 .

Without knowing anything about the statistics of the noise vectornK in equation (7.23), the best we can do is to
solve the system

zK = ΨKx0 + gK

in the sense of least squares, to obtain an estimate ofx0 from the measurementsy0, . . . , yK :

x̂0|K = Ψ†K(zK − gK)

whereΨ†K is the pseudoinverse ofΨK . We know that ifΨK has full rank, the result with the pseudoinverse is the
same as we would obtain by solving the normal equations, so that

Ψ†K = (ΨT
KΨK)−1ΨT

K .

The least square solution to system (7.23) minimizes the residue between the left and the right-hand side under the
assumption that all equations are to be treated the same way. This is equivalent to assuming that all the noise terms in
nK are equally important. However, we know the covariance matrices of all these noise terms, so we ought to be able
to do better, and weigh each equation to keep these covariances into account. Intuitively, a small covariance means that
we believe in that measurement, and therefore in that equation, which should consequently be weighed more heavily
than others. The quantitative embodiment of this intuitive idea is at the core of the Kalman filter.

In summary, the Kalman filter for a linear system has been shown to be equivalent to a linear equation solver, under
the assumption that the noise that affects each of the equations has the same probability distribution, that is, that all
the noise terms innK in equation 7.23 are equally important. However, the Kalman filter differs from a linear solver
in the following important respects:

1. The noise terms innK in equation 7.23 arenotequally important. Measurements come with covariance matrices,
and the Kalman filter makes optimal use of this information for a proper weighting of each of the scalar equations
in (7.23). Better information ought to yield more accurate results, and this is in fact the case.

2. The system (7.23) is not solved all at once. Rather, an initial solution is refined over time as new measurements
become available. The final solution can be proven to be exactly equal to solving system (7.23) all at once.
However, having better and better approximations to the solution as new data come in is much preferable in a
dynamic setting, where one cannot in general wait for all the data to be collected. In some applications, data my
never stop arriving.

3. A solution for the estimatêxk|k of the current state is given, and not only for the estimatex̂0|k of the initial state.
As time goes by, knowledge of the initial state may obsolesce and become less and less useful. The Kalman
filter computes up-to-date information about the current state.


