
1

Introduction

CPS 116

Introduction to Database Systems

2

Course goals

Random things you might do (for fun or profit)
after taking this course

3

Course roadmap

Relational databases
Relational algebra, database design, SQL, application
programming

XML
Data model and query languages, application programming,
interplay between XML and relational databases

Database internals
Storage, indexing, query processing and optimization, concurrency
control and recovery

Topics beyond traditional databases
Web searches and others

2

4

What is a database system?

From Oxford Dictionary:

Database: an organized body of related information

Database system, DataBase Management System
(DBMS): a software system that facilitates the
creation and maintenance and use of an electronic
database

5

What do you want from a DBMS?
Keep data around (persistent)
Answer queries (questions) about data
Update data

Example: a traditional banking application
Each account belongs to a branch, has a number, an owner, a
balance, …
Each branch has a location, a manager, …
Persistency: Homer will be pretty upset if his balance disappears
after a power outage
Query: What’s the balance in Homer Simpson’s account?
Modification: Homer withdraws $100

6

Sounds simple!

ASCII file

Accounts/branches separated by newlines

Fields separated by #’s

1001#Springfield#Mr. Morgan

... ...
00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00
... ...

3

7

Query

What’s the balance in Homer Simpson’s account?

A simple script
Scan through the accounts file

Look for the line containing “Homer Simpson”

Print out the balance

1001#Springfield#Mr. Morgan

... ...
00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00
... ...

8

Query processing tricks

Tens of thousands of accounts are not Homer’s

What happens when the query changes to: What’s the
balance in accounts 00142-00857?

9

Observations

Tons of tricks (not only in storage and query
processing, but also in concurrency control,
recovery, etc.)

Different tricks may work better in different usage
scenarios (example?)

Same tricks get used over and over again in different
applications

4

10

The birth of DBMS – 1

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

11

The birth of DBMS – 2

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

12

The birth of DBMS – 3

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

5

13

Early efforts

“Factoring out” data management functionalities
from applications and standardizing these
functionalities is an important first step

CODASYL standard (circa 1960’s)

Bachman got a Turing award for this in 1973

But getting the abstraction right (the API between
applications and the DBMS) is still tricky

14

CODASYL

Query: Who have accounts with 0 balance managed by a
branch in Springfield?

Pseudo-code of a CODASYL application:

Use index on account(balance) to get accounts with 0 balance;
For each account record:

Get the branch id of this account;
Use index on branch(id) to get the branch record;
If the branch record’s location field reads “Springfield”:

Output the owner field of the account record.

Programmer controls “navigation”: accounts → branches
How about branches → accounts?

15

What’s wrong?

The best navigation strategy & the best way of
organizing the data depend on data/workload
characteristics

With the CODASYL approach
To write correct code, application programmers need to
know how data is organized physically (e.g., which
indexes exist)

To write efficient code, application programmers also
need to worry about data/workload characteristics

Can’t cope with changes in data/workload characteristics

6

16

The relational revolution (1970’s)

A simple data model: data is stored in relations (tables)

A declarative query language: SQL

SELECT Account.owner
FROM Account, Branch
WHERE Account.balance = 0
AND Branch.location = ’Springfield’
AND Account.branch_id = Branch.branch_id;

Programmer specifies what answers a query should return,
but not how the query is executed

DBMS picks the best execution strategy based on
availability of indexes, data/workload characteristics, etc.

Provides physical data independence

17

Physical data independence

Applications should not need to worry about how
data is physically structured and stored

Applications should work with a logical data model
and declarative query language

Leave the implementation details and optimization
to DBMS

The single most important reason behind the success
of DBMS today

And a Turing Award for E. F. Codd

18

Modern DBMS features

Persistent storage of data

Logical data model; declarative queries and updates
→ physical data independence

Relational model is the dominating technology today

XML is a hot wanna-be

What else?

7

19

DBMS is multi-user

Example
get account balance from database;
if balance > amount of withdrawal then

balance = balance - amount of withdrawal;
dispense cash;
store new balance into database;

Homer at ATM1 withdraws $100

Marge at ATM2 withdraws $50

Initial balance = $400, final balance = ?

20

Final balance = $300

read balance; $400

if balance > amount then
balance = balance - amount; $300
write balance; $300

read balance; $400
if balance > amount then

balance = balance - amount; $350
write balance; $350

Homer withdraws $100: Marge withdraws $50:

21

Final balance = $

read balance;

if balance > amount then
balance = balance - amount;
write balance;

read balance;

if balance > amount then
balance = balance - amount;
write balance;

Homer withdraws $100: Marge withdraws $50:

350

$400

$300
$300

$400

$350
$350

8

22

Concurrency control in DBMS

Appears similar to concurrent programming
problems?

But data not main-memory variables

Appears similar to file system concurrent access?
Approach taken by MySQL in the old days
(fun reading: http://openacs.org/philosophy/why-not-mysql.html)

23

Recovery in DBMS

Example: balance transfer
decrement the balance of account X by $100;
increment the balance of account Y by $100;

Scenario 1: Power goes out after the first instruction

Scenario 2: DBMS buffers and updates data in
memory (for efficiency); before they are written back
to disk, power goes out

How can DBMS deal with these failures?

24

Summary of modern DBMS features

Persistent storage of data
Logical data model; declarative queries and updates
→ physical data independence
Multi-user concurrent access
Safety from system failures
Performance, performance, performance

Massive amounts of data (terabytes ~ petabytes)
High throughput (thousands ~ millions transactions per
minute)
High availability (≥ 99.999% uptime)

9

25

Major DBMS today

Oracle

IBM DB2 (from System R, System R*, Starburst)

Microsoft SQL Server

NCR Teradata

Sybase

Informix (acquired by IBM)

PostgreSQL (from UC Berkeley’s Ingres, Postgres)

Tandem NonStop (acquired by Compaq, now HP)

? MySQL and Microsoft Access

26

Modern DBMS architecture

OS layer is bypassed for performance and safety

Many details will be filled in the DBMS box

DBMS

Disk(s)

Applications

OS

27

People working with databases

End users: query/update databases through application user
interfaces (e.g., Amazon.com, 1-800-DISCOVER, etc.)

Database designers: design database “schema” to model
aspects of the real world

Database application developers: build applications that
interface with databases

Database administrators (a.k.a. DBA’s): load, back up, and
restore data, fine-tune databases for performance

DBMS implementors: develop the DBMS or specialized
data management software, implement new techniques for
query processing and optimization

10

28

Course information
Book

Database Systems: The Complete Book, by H. Garcia-Molina, J. D.
Ullman, and J. Widom

Web site
http://www.cs.duke.edu/courses/fall05/cps116/

Course information; tentative syllabus and reference sections in
GMUW; lecture slides, assignments, programming notes

Blackboard: for grades only
Mailing list: cps116@cs.duke.edu

Messages of general interest only

No official recitation sessions; help sessions for assignments,
project, and exams to be scheduled

29

Course load

Four homework assignments (35%)
Include written and programming problems

Course project (25%)
Details to be given in the third week of class

Midterm and final (20% each)
Open book, open notes

Final is comprehensive, but emphasizes the second half of
the course

