Relational Model & Algebra

CPS 116

Introduction to Database Systems

Announcements (Thurs. September 1) Z

+ Please sign up for mailing list and database (IBM
DB2) accounts on the sign-up sheet (now
circulating)

< Homework #1 will be assigned next Tuesday

< Office hours: see also course Web page

® Jun: TTH afternoon
= Ming: MW late afternoon
< Book update
= $101 (new) / $75.75 (used) from Duke bookstore
¢ Available possibly tomorrow and definitely by next Tuesday
= $86.15 (new, free shipping) from Amazon

Relational data model

% A database is a collection of relations (or tables)
% Each relation has a list of attributes (or columns)
< Each attribute has a domain (or type)
= Set-valued attributes not allowed
< Each relation contains a set of tuples (or rows)
= Each tuple has a value for each attribute of the relation

® Duplicate tuples are not allowed

* Two tuples are identical if they agree on all attributes

= Simplicity is a virtue!

Example
Student Conrse
SID |name age [GPA CID title
142 |Bart 10 (2.3 CPS116 |Intro. to Database Systems
123 [Milhouse|10 |3.1 CPS130|Analysis of Algorithms
857 |[Lisa 8 4.3 CPS114|Computer Networks
456 [Ralph 8 2.3
Envoll
Ordering of rows doesn’t matter SIORIGID,
. 142 |CPS116
(even though the output is 142 [cPsiia
always in some order) 123 [cPS116
857 |CPS116
857 |CPS130
456 |CPS114

Schema versus instance

< Schema (metadata)
= Specification of how data is to be structured logically
® Defined at set-up
= Rarely changes
< Instance
= Content
® Changes rapidly, but always conforms to the schema
« Compare to type and objects of type in a
programming language

6

Example

< Schema
= Student (SID integer, name string, age integer, GPA float)
= Course (CID string, title string)
= Enroll (SID integer, CID integer)
< Instance
= { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ...}
= { <CPSI 16, Intro. to Database Systems), coolf
= { (142, CPS116), (142, CPS114), ...}

Relational algebra operators

A language for querying relational databases based on
operators:

< Core set of operators:

= Selection, projection, cross product, union, difference, and
renaming

% Additional, derived operators:
= Join, natural join, intersection, etc.

< Compose operators to make complex queries
q

Selection

< Input: a table R
% Notation: 0, R
= p is called a selection condition/predicate
< Purpose: filter rows according to some criteria

< Output: same columns as R, but only rows of R that
satisfy p

Selection example

< Students with GPA higher than 3.0

Opa > 3.0 Student

SID |name age

[510 Jnome __lage J6PA |

G

142 |Bart 10 2.3

123 [Milhouse[10 [3.1

857 [Lisa |8 [4.3 857 [Lisa [8 [a.3]
2.3

456 |Ralph 8

More on selection

< Selection predicate in general can include any
column of R, constants, comparisons (=, <, etc.),
and Boolean connectives (A: and, V: or, and —: not)
® Example: straight A students under 18 or over 21
OGPA > 4.0 A (age < 18V age > 21y Sttidlent
< But you must be able to evaluate the predicate over
a single row of the input table

= Example: student with the highest GPA
O Pttt et TG Student

Projection

< Input: a table R
< Notation: 7, R
® L is alist of columns in R
< Purpose: select columns to output

< Output: same rows, but only the columns in L

Projection example

% ID’s and names of all students

1D, name SHAER?

SID |name age [GPA SID |name

142 |Bart 10 |2.3 142 |Bart
123 |Milhouse|10 (3.1 123 |Milhouse
857 |Lisa 8 4.3 857 |Lisa

456 |Ralph 8 208 456 |Ralph

More on projection

% Duplicate output rows are removed (by definition)

= Example: student ages

Cross product

< Input: two tables R and §
% Notation: R X §

T g Staudent % Purpose: pairs rows from two tables
SID |name age [GPA m o . : .
TA0R pecrmm TOm 283 < Output: for each row 7 in R and each row s in §,
1238 HillhouseT 10Nl 33t output a row #s (concatenation of » and s)
857 |Lisa 8 [4.3 s]
456 [Ralph 8 2.8
15 16
Cross product example A note on column ordering
% Student X Enroll < The ordering of columns in a table is considered
SID [name _age [apA 510 [ci0 unimportant (as is the ordering of rows)
142 |Bart 10 2.3 142 |CPS116
123 |Milhouse|10 |3.1 142 |CPS114 SID |name age [GPA |SID |CID SID |CID SID [name age |GPA
X 123 [cPsits 142 |Bart 10 2.3 |142 |CPS116 142 |CPS116 142 [Bart 10 2.3
142 |Bart 10 |2.3 [142 [CPS114 142 |CPS114[142 |Bart 10 |2.3
142 [Bart 10 (2.3 |123 |CPS116| __ |123 |CPS116 (142 |Bart 10 [2.3
= b o] = ot b
142 Bart 10 12.3 [142 CPSLLE 123 :"]house 10 3‘1 123 CPSilG 123 |CPS116 (123 :Hhouse 10 3‘1
142 [Bart |10 2.3 |142 [CPS1i4 Lot SE 2 oL S5 2
142 |Bart 10 |2.3 [123 [CPS116
123 [Milhouse [10 |3.1 [142 |CPS116 o> Th d . t .
ro3 TiThosee o 1o 122 Tepsine % That means cross product is commutative, i.e.,
123 [Milhouse[10 [3.1 [123 [CPS116 R xS =S8XR for any R and §

Derived operator: join

< Input: two tables R and §
Notation: R! | §
= is called a join condition/predicate

< Purpose: relate rows from two tables according to
some criteria

< Output: for each row 7 in R and each row s in §,
output a row 7s if » and s satisfy p

% Shorthand for o, (RXS)

Join example

+ Info about students, plus CID’s of their courses

|
Student g, 510 = Earonsip Enroll

SID |name age |GPA SID |CID

142 |Bart 10 2.3 142 |CPS116

123 |Milhouse |10 3.1 . 142 |CPS114
Student SID = 123 |CPS116

Enroll SID,

Use table_name. column_name syntax

to disambiguate [SID [name age [6PA [sID [cID
identically named [142 [Bart 10 [2.3 [142 [CPS116
142 [Bart 2.3 CPS114

columns from
different input
tables

Derived operator: natural join

< Input: two tables R and §

% Notation: R! §

Natural join example

& Student ! Enroll = T, (Student |, Enroll)

= I
TTSID, name, age, GPa, cip (St#dent L g 10, i — gy sip Enroll)

. . SID |name age |GPA SID |CID
< Purpose: relate rows from two tables, and T T 47 Topsiie
= Enforce equality on all common attributes 123 |Milhouse|10 |3.1 | i:z EEZEQ
= Eliminate one copy of common attributes
+ Shorthand for 7, (R ! »S), where 10 Toane ™ Tage [6PA i
J 142 [Bart |10 [2.3 CPS116
O .
p equates all attributes common to R and § TR0 a8 T
= L is the union of all attributes from R and §, with
duplicate attributes removed
123 [Milhouse [10 [3.1 CPS1l6
L. 1.
21 22
Union Difference

< Input: two tables R and §
% Notation: RU §

® R and § must have identical schema
% Output:

® Has the same schema as R and §

® Contains all rows in R and all rows in §, with duplicate
rows eliminated

< Input: two tables R and §
< Notation: R — §

® R and § must have identical schema
< Output:

® Has the same schema as R and §

= Contains all rows in R that are not found in §

Derived operator: intersection

< Input: two tables R and §
% Notation: RN §

® R and § must have identical schema
< Output:

® Has the same schema as R and §

= Contains all rows that are in both R and §
« Shorthand forR — (R — §)
% Also equivalent to § — (§ — R)
#AndtoR! §

Renaming

< Input: a table R

% Notation: pg R, or g4, 4,)R

 Purpose: rename a table and/or its columns

< Output: a renamed table with the same rows as R
< Used to

= Avoid confusion caused by identical column names

= Create identical columns names for natural joins

Renaming example

% SID’s of students who take at least two courses
Enroll !, Envoll

Ty (Enroll ! MEWOZD

Expression tree syntax: Tgp,
!
* SID1 = SID2 A CID1 # CID2

pEﬂml/l(SlDl, CID1) pEnm/lZ(SIDZ, CID2)

Enroll Enroll

Summary of core operators

+ Selection: g, R

< Projection: 7, R

< Cross product: R X §

% Union: RU S

< Difference: R — §

% Renaming: p g4, 4,)R

= Does not really add to processing power

Summary of derived operators

@ Join: R! S
% Natural join: R! §

< Intersection: RN §

< Many more

® Semijoin, anti-semijoin, quotient, ...

An exercise

% Names of students in Lisa’s classes

Their names 77,

/ |

Lisa’s classes T'sip

Students in

N / \
Lisa’s classes Teip Enroll
Who's Lisa? !

Oﬂame 4 \EW"OIZ

Student

\

Student

Another exercise

% CID’s of the courses that Lisa is NOT taking

All CID’s CID’s of the courses
that Lisa IS taking
Tep Tcip
Cozltme ! |
Enroll G pame = “Lisa”
Student

A trickier exercise

< Who has the highest GPA?
® Who does NOT have the highest GPA?
= Whose GPA is lower than somebody else’s?

. T~

D T Student1 SID
|
Student ; Smdeym xmtz.cm
A deeper question: Pstufentt Pstudent2
When (and why) is “—” needed?
Student Student

30

Monotone operators

0 What happens
RelOp to the output?
Add more rows

to the input...

< If some old output rows may need to be removed
® Then the operator is non-monotone
% Otherwise the operator is monotone

® That is, old output rows always remain “correct” when
more rows are added to the input

® Formally, for a monotone operator Re/Op:

R C R’ implies RelOp(R) C RelOp(R’)

Classification of relational operators

+ Selection: o, R Monotone
% Projection: 7; R Monotone

% Cross product: R X § Monotone

@ Join: R! ,§ Monotone
< Natural join: R! § Monotone
% Union: RU S Monotone
< Difference: R — § Monotone w.r.t. R; non-monotone w.r.t §

« Intersection: RN S Monotone

Why is “—” needed for highest GPA?

< Composition of monotone operators produces a
monotone query
= Old output rows remain “correct” when more rows are
added to the input
< Highest-GPA query is non-monotone
= Current highest GPA is 4.1
= Add another GPA 4.2

® Old answer is invalidated

< So it must use difference!

Why do we need core operator X?

< Difference
= The only non-monotone operator
% Cross product
® The only operator that adds columns
< Union
= The only operator that allows you to add rows?
® A more rigorous argument?
% Selection? Projection?
* Homework problem ©

Why is r.a. a good query language?

< Simple
= A small set of core operators who semantics are easy to
grasp
< Declarative?
® Yes, compared with older languages like CODASYL
= Though operators do look somewhat “procedural”
< Complete?

= With respect to what?

Relational calculus

% {sSID | 5 € Student \
(3’ € Student: s.GPA < 5'.GPA) }, or
{s.SID | 5 € Student \
(V5" € Student: s.GPA > 5 .GPA) }
% Relational algebra = “safe” relational calculus
= Every query expressible as a safe relational calculus query is also
expressible as a relational algebra query
= And vice versa
< Example of an unsafe relational calculus query
= { s.name ‘ —(s € Student) }

= Cannot evaluate this query just by looking at the database

Turing machine?

% Relational algebra has no recursion

= Example of something not expressible in relational
algebra: Given relation Parent(parent, child), who are
Bart’s ancestors?

< Why not Turing machine?
= Optimization becomes undecidable
® You can always implement it at the application level

< Recursion is added to SQL nevertheless!

