Relational Database Design Part I CPS 116 Introduction to Database Systems

Announcements (September 6)

DB2 accounts created; change your password!
Let me know if you have NOT received the email

- ✤ Homework #1 out today
 - Due next Thursday (September 15) at 11:59pm
 Start early!
- * Read instructions on Gradiance carefully
- * Make use of office hours

Relational model: review

- * A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
- * Each relation contains a set of tuples (or rows)

Keys

- A set of attributes K is a key for a relation R if
 - In no instance of R will two different tuples agree on all attributes of K
 - That is, K is a "tuple identifier"
 - No proper subset of K satisfies the above condition
 That is, K is minimal
- Example: Student (SID, name, age, GPA)
 - SID is a key of Student
 - *age* is not a key (not an identifier)
 - {SID, name} is not a key (not minimal)

Schema vs. data							5	
Student								
	SID	name	age	GPA				
	142	Bart	10	2.3				
	123	Milhouse	10	3.1				
	857	Lisa	8	4.3				
	456	Ralph	8	2.3				
✤ Is name a key of S	Stud	ent?						
Yes? Seems reasonable for this instance								
 No! Student nan 	nes	are not	unio	que i	n genera	al		
* Key declarations	are	part o	f th	ie sc	hema			

More examples of keys

✤ Enroll (SID, CID)

* Address (street_address, city, state, zip)

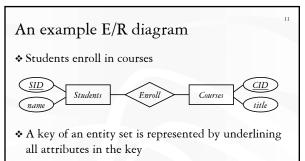
Usage of keys

- * More constraints on data, fewer mistakes
- * Look up a row by its key value
 - Many selection conditions are "key = value"
- ✤ "Pointers"
 - Example: Enroll (SID, CID)
 - SID is a key of Student
 - CID is a key of Course
 - An Enroll tuple "links" a Student tuple with a Course tuple
 - Many join conditions are "key = key value stored in another table"

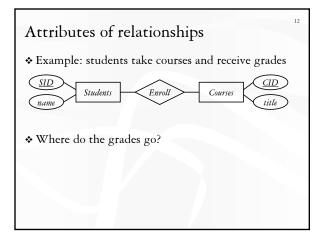
Database design

- Understand the real-world domain being modeled
- * Specify it using a database design model
 - Design models are intuitive and convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
 - UML (Unified Modeling Language)
- * Translate specification to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- ✤ Create DBMS schema

Entity-relationship (E/R) model

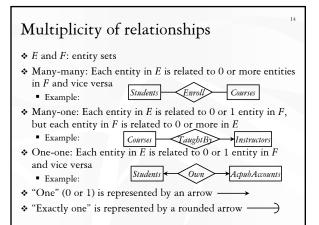

- Historically and still very popular
- Can think of as a "watered-down" object-oriented design model
- Primarily a design model—not directly implemented by DBMS
- * Designs represented by E/R diagrams
 - We use the style of E/R diagram covered by GMUW; there are other styles/extensions
 - Very similar to UML diagrams

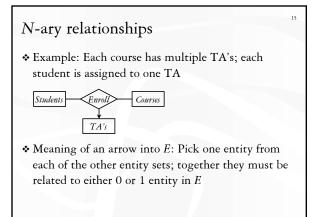
E/R basics

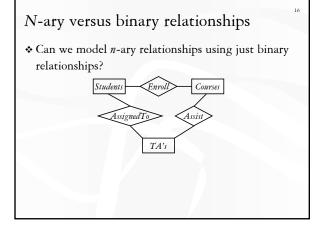

- Entity: a "thing," like a record or an object
- Entity set: a collection of things of the same type, like a relation of tuples or a class of objects

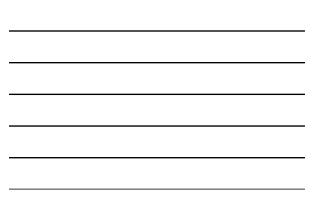
10

- Represented as a rectangle
- $\boldsymbol{\diamond}$ Relationship: an association among entities
- Relationship set: a set of relationships of the same type (associations among same entity sets)
 - Represented as a diamond
- Attributes: properties of entities or relationships, like attributes of tuples or objects
 - Represented as ovals

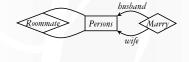

 A key is a set of attributes whose values can belong to at most one entity in an entity set—like a key of a relation



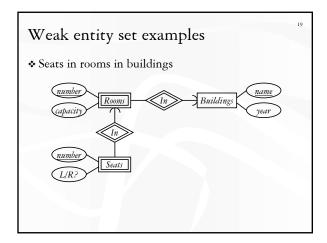


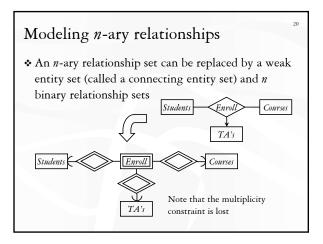

More on relationships

- There could be multiple relationship sets between the same entity sets
 - Example: Students Enroll Courses; Students TA Courses
- In a relationship set, each relationship is uniquely identified by the entities it connects
 - Example: Between Bart and CPS116, there can be at most one *Enroll* relationship and at most one *TA* relationship
 - "What if Bart took CPS116 twice and got two different grades?



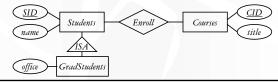
Roles in relationships


- An entity set may participate more than once in a relationship set
- Jay need to label edges to distinguish roles
- * Examples
 - People are married as husband and wife; label needed
 - People are roommates of each other; label not needed


18

Weak entity sets

- Sometimes the key of an entity set *E* comes not completely from its own attributes, but from the keys of other (one or more) entity sets to which *E* is linked by many-one (or one-one) relationship sets
 - *E* is called a weak entity set
 Represented by double rectangle
 - Many-one (or one-one) relationship sets required
 - Represented by double diamonds
 - With many-many, we would not know which entity provides the key value



21

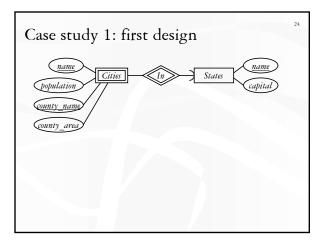
Similar to the idea of subclasses in object-oriented programming: subclass = special case, fewer entities, and possibly more properties

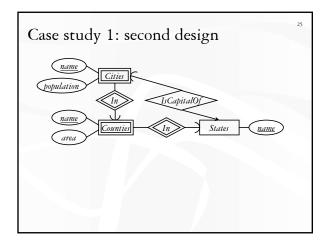
ISA relationships

- Represented as a triangle (direction is important)
- Example: Graduate students are students, but they also have offices

Summary of E/R concepts

- Entity sets
 - Keys
 - Weak entity sets
- * Relationship sets
 - Attributes of relationships
 - Multiplicity
 - Roles
 - Binary versus N-ary relationships
 - Modeling N-ary relationships with weak entity sets and binary relationships

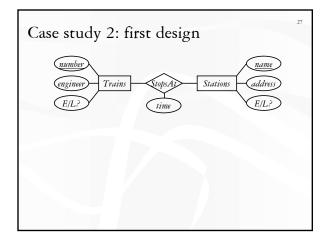

22


23

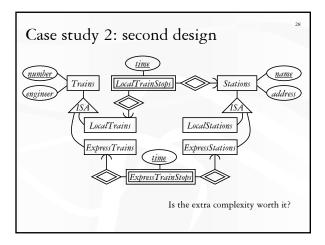
ISA relationships

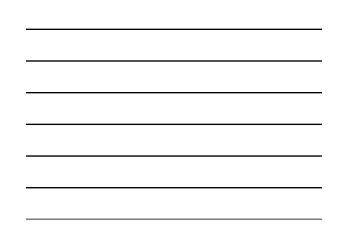
Case study 1

- $\boldsymbol{\ast}$ Design a database representing cities, counties, and states
 - For states, record name and capital (city)
 - For counties, record name, area, and location (state)
 - For cities, record name, population, and location (county and state)
- Assume the following:
 - Names of states are unique
 - Names of counties are only unique within a state
 - Names of cities are only unique within a county
 - A city is always located in a single county
 - A county is always located in a single state


Case study 2

Design a database consistent with the following:


• A station has a unique name and an address, and is either an express station or a local station


26

- A train has a unique number and an engineer, and is either an express train or a local train
- A local train can stop at any station
- An express train only stops at express stations
- A train can stop at a station for any number of times during a day
- Train schedules are the same everyday

