
1

Relational Database Design Theory
Part I

CPS 116

Introduction to Database Systems

2

Announcements (September 13)

Homework #1 due this Thursday

Course project assigned today
Choice of a “standard” or “open” course project

Two milestones (October 13 and November 10) and a
final demo/report (December 6-13)

3

Motivation

How do we tell if a design is bad, e.g.,
StudentEnroll (SID, name, CID)?

This design has redundancy, because the name of a student is
recorded multiple times, once for each course the student is taking

How about a systematic approach to detecting and
removing redundancy in designs?

Dependencies, decompositions, and normal forms

SID name CID
142 Bart CPS116
142 Bart CPS114
857 Lisa CPS116
857 Lisa CPS130
...

2

4

Functional dependencies

A functional dependency (FD) has the form X→ Y,
where X and Y are sets of attributes in a relation R
X→ Y means that whenever two tuples in R agree
on all the attributes in X, they must also agree on
all attributes in Y

X Y Z
a b c
a ? ?
...

X Y Z
a b c
a b ?
...Must be b Could be anything

5

FD examples

Address (street_address, city, state, zip)
street_address, city, state→ zip

zip→ city, state

zip, state→ zip?

zip→ state, zip?

6

Keys redefined using FD’s

A set of attributes K is a key for a relation R if

K→ all (other) attributes of R
That is, K is a “super key”

No proper subset of K satisfies the above condition
That is, K is minimal

3

7

Reasoning with FD’s

Given a relation R and a set of FD’s F

Does another FD follow from F?
Are some of the FD’s in F redundant (i.e., they follow
from the others)?

Is K a key of R?
What are all the keys of R?

8

Attribute closure

Given R, a set of FD’s F that hold in R, and a set of
attributes Z in R:
The closure of Z (denoted Z+) with respect to F is
the set of all attributes {A1, A2, …} functionally
determined by Z (that is, Z → A1 A2 …)

Algorithm for computing the closure
Start with closure = Z
If X→ Y is in F and X is already in the closure, then
also add Y to the closure

Repeat until no more attributes can be added

9

A more complex example

StudentGrade (SID, name, email, CID, grade)

(Not a good design, and we will see why later)

4

10

Example of computing closure

F includes:
SID→ name, email

email→ SID

SID, CID→ grade

{ CID, email }+ = ?

email→ SID
Add SID; closure is now { CID, email, SID }

SID→ name, email
Add name, email; closure is now { CID, email, SID, name }

SID, CID→ grade
Add grade; closure is now all the attributes in StudentGrade

11

Using attribute closure

Given a relation R and set of FD’s F

Does another FD X→ Y follow from F?
Compute X+ with respect to F

If Y ⊆ X+, then X→ Y follow from F

Is K a key of R?
Compute K+ with respect to F

If K+ contains all the attributes of R, K is a super key

Still need to verify that K is minimal (how?)

12

Rules of FD’s

Armstrong’s axioms
Reflexivity: If Y ⊆ X, then X→ Y
Augmentation: If X→ Y, then XZ→ YZ for any Z
Transitivity: If X→ Y and Y→ Z, then X→ Z

Rules derived from axioms
Splitting: If X→ YZ, then X→ Y and X→ Z
Combining: If X→ Y and X→ Z, then X→ YZ

5

13

Using rules of FD’s

Given a relation R and set of FD’s F

Does another FD X→ Y follow from F?
Use the rules to come up with a proof

Example:
• F includes:
SID→ name, email; email→ SID; SID, CID→ grade

•CID, email→ grade?

email→ SID (given in F)

CID, email→ CID, SID (augmentation)

SID, CID→ grade (given in F)

CID, email→ grade (transitivity)

14

Non-key FD’s

Consider a non-trivial FD X→ Y where X is not a
super key

Since X is not a super key, there are some attributes (say
Z) that are not functionally determined by X

X Y Z
a b c1
a b c2
...

That a is always associated with b is recorded by multiple rows:
redundancy, update anomaly, deletion anomaly

15

Example of redundancy

StudentGrade (SID, name, email, CID, grade)
SID→ name, email

SID name email CID grade
142 Bart bart@fox.com CPS116 B-
142 Bart bart@fox.com CPS114 B
123 Milhouse milhouse@fox.com CPS116 B+
857 Lisa lisa@fox.com CPS116 A+
857 Lisa lisa@fox.com CPS130 A+
456 Ralph ralph@fox.com CPS114 C
...

6

16

Decomposition

Eliminates redundancy

To get back to the original relation:

SID name email CID grade
...

SID name email
142 Bart bart@fox.com
123 Milhouse milhouse@fox.com
857 Lisa lisa@fox.com
456 Ralph ralph@fox.com
...

SID CID grade
142 CPS116 B-
142 CPS114 B
123 CPS116 B+
857 CPS116 A+
857 CPS130 A+
456 CPS114 C
...

17

Unnecessary decomposition
SID name email
142 Bart bart@fox.com
123 Milhouse milhouse@fox.com
857 Lisa lisa@fox.com
456 Ralph ralph@fox.com
...SID name

142 Bart
123 Milhouse
857 Lisa
456 Ralph
... ...

SID email
142 bart@fox.com
123 milhouse@fox.com
857 lisa@fox.com
456 ralph@fox.com
... ...

Fine: join returns the original relation

Unnecessary: no redundancy is removed, and now
SID is stored twice!

18

Bad decomposition
SID CID grade
142 CPS116 B-
142 CPS114 B
123 CPS116 B+
857 CPS116 A+
857 CPS130 A+
456 CPS114 C
...

SID CID
142 CPS116
142 CPS114
123 CPS116
857 CPS116
857 CPS130
456 CPS114
... ...

SID grade
142 B-
142 B
123 B+
857 A+
857 A+
456 C
... ...

7

19

Lossless join decomposition

Decompose relation R into relations S and T
attrs(R) = attrs(S) ∪ attrs(T)
S = πattrs(S) (R)
T = πattrs(T) (R)

The decomposition is a lossless join decomposition if,
given known constraints such as FD’s, we can
guarantee that R = S T

Any decomposition gives R ⊆ S T (why?)
A lossy decomposition is one with R ⊂ S T

20

Loss? But I got more rows!

“Loss” refers not to the loss of tuples, but to the loss
of information

Or, the ability to distinguish different original relations

SID CID grade
142 CPS116 B-
142 CPS114 B
123 CPS116 B+
857 CPS116 A+
857 CPS130 A+
456 CPS114 C
...

SID CID
142 CPS116
142 CPS114
123 CPS116
857 CPS116
857 CPS130
456 CPS114
... ...

SID grade
142 B-
142 B
123 B+
857 A+
857 A+
456 C
... ...

No way to tell
which is the original relation

SID CID grade
142 CPS116 B
142 CPS114 B-
123 CPS116 B+
857 CPS116 A+
857 CPS130 A+
456 CPS114 C
...

21

Questions about decomposition

When to decompose

How to come up with a correct decomposition (i.e.,
lossless join decomposition)

8

22

An answer: BCNF

A relation R is in Boyce-Codd Normal Form if
For every non-trivial FD X→ Y in R, X is a super key

That is, all FDs follow from “key → other attributes”

When to decompose
As long as some relation is not in BCNF

How to come up with a correct decomposition
Always decompose on a BCNF violation (details next)

Then it is guaranteed to be a lossless join decomposition!

23

BCNF decomposition algorithm

Find a BCNF violation
That is, a non-trivial FD X→ Y in R where X is not a
super key of R

Decompose R into R1 and R2, where
R1 has attributes X ∪ Y
R2 has attributes X ∪ Z, where Z contains all attributes
of R that are in neither X nor Y

Repeat until all relations are in BCNF

24

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)
BCNF violation: SID→ name, email

Student (SID, name, email) Grade (SID, CID, grade)
BCNF BCNF

9

25

Another example

StudentGrade (SID, name, email, CID, grade)

26

Why is BCNF decomposition lossless

Given non-trivial X→ Y in R where X is not a super
key of R, need to prove:
Anything we project always comes back in the join:
R ⊆ πXY (R) πXZ (R)

Sure; and it doesn’t depend on the FD

Anything that comes back in the join must be in the
original relation:
R ⊇ πXY (R) πXZ (R)

Proof makes use of the fact that X→ Y

27

Recap

Functional dependencies: a generalization of the key
concept

Non-key functional dependencies: a source of
redundancy

BCNF decomposition: a method for removing
redundancies

BNCF decomposition is a lossless join decomposition

BCNF: schema in this normal form has no
redundancy due to FD’s

