Relational Database Design Theory
Parc I

CPS 116

Introduction to Database Systems

Announcements (September 13)

< Homework #1 due this Thursday

< Course project assigned today
® Choice of a “standard” or “open” course project

® Two milestones (October 13 and November 10) and a
final demo/report (December 6-13)

Motivation
SID [name CID
142 [Bart CPS116
142 [Bart CPS114
857 |[Lisa CPS116
857 [Lisa CPS130

< How do we tell if a design is bad, e.g.,
StudentEnvroll (SID, name, CID)?

® This design has redundancy, because the name of a student is
recorded multiple times, once for each course the student is taking

< How about a systematic approach to detecting and
removing redundancy in designs?

® Dependencies, decompositions, and normal forms

Functional dependencies

< A functional dependency (FD) has the form X — Y,
where X and Y are sets of attributes in a relation R
< X — Y means that whenever two tuples in R agree

on all the attributes in X, they must also agree on
all attributes in Y

X

a

alb | 24
Must be /) m—tr” Could be anything

FD examples

Addyess (street_address, civy, state, zip)
< street_addvess, city, state — zip

% 21p —> city, state

% 21p, State — 2ip?

< 21p —> state, 2ip?

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
% K — all (other) attributes of R
® That is, K is a “super key”
< No proper subset of K satisfies the above condition

® That is, K is minimal

Reasoning with FD’s

Given a relation R and a set of FD’s F

% Does another FD follow from F?

= Are some of the FD’s in F redundant (i.e., they follow
from the others)?

% Is K a key of R?
® What are all the keys of R?

Attribute closure

% Given R, a set of FD’s F that hold in R, and a set of
attributes Z in R:
The closure of Z (denoted Z*) with respect to F is
the set of all atcributes {4, A,, ...} functionally
determined by Z (thatis, Z — A, 4, ...)

% Algorithm for computing the closure
= Start with closure = Z

= If X — Yis in F and X is already in the closure, then
also add Y to the closure

® Repeat until no more attributes can be added

A more complex example

StudentGrade (SID, name, email, CID, grade)

(Not a good design, and we will see why later)

10

Example of computing closure

< Fincludes:
® SID — name, email
= email — SID
= SID, CID — grade
<« { CID, email }+ = ?
% email — SID
= Add SID; closure is now { CID, email, SID }
% SID — name, ematl
= Add name, email; closure is now { CID, email, SID, name }
% SID, CID — grade

® Add grade; closure is now all the attributes in StudentGrade

Using attribute closure

Given a relation R and set of FD’s F
% Does another FD X — Y follow from J?
= Compute X" with respect to F
= I[fY C X7, then X — Y follow from F
% Is K a key of R?
= Compute Kt with respect to F
= If K" contains all the attributes of R, K is a super key

= Still need to verify that K is minimal (how?)

Rules of FD’s

< Armstrong’s axioms
® Reflexivity: f Y C X, then X =Y
= Augmentation: If X — Y, then XZ — YZ for any Z
= Transitivity: If X = Yand Y — Z, then X = Z
< Rules derived from axioms
= Splitting: If X =+ YZ, then X =+ Yand X = Z
= Combining: If X = Yand X — Z, then X — YZ

Using rules of FD’s

Given a relation R and set of FD’s F
% Does another FD X — Y follow from F?

= Use the rules to come up with a proof

= Example:

¢ Fincludes:
SID — name, email, email — SID; SID, CID — grade

® CID, email — grade?
email — SID (given in F)
CID, email — CID, SID (augmentation)
SID, CID — grade (given in F)
CID, email — grade (transitivity)

Non-key FD’s

% Consider a non-trivial FD X — Y where X is not a
super key

= Since X is not a super key, there are some attributes (say
Z) that are not functionally determined by X

X|\Y|Z
alb|cl
a|b|c2

That « is always associated with 4 is recorded by multiple rows:
redundancy, update anomaly, deletion anomaly

Example of redundancy

% StudentGrade (SID, name, email, CID, grade)
% SID — name, email

SID |name email CID grade
142 |Bart bart@fox.com CPS116 |B-
142 |Bart bart@fox.com CPS11418B
123 [Milhouse |miThouse@fox.com |CPS116 |B+
857 |Lisa 1isa@fox.com CPS116 |A+
857 |Lisa lisa@fox.com CPS130|A+
456 |Ralph ralph@fox.com CPS114|C

Decomposition

[SID [name |email |CID |grade |
[... | O
SID |name email SID |CID grade
142 |Bart bart@fox.com 142 [CPS116 [B-
123 [Milhouse |milhouse@fox.com 142 |CPS114 (B
857 |[Lisa lisa@fox.com 123 [CPS116 [B+
456 [Ralph ralph@fox.com 857 |CPS116 [A+
857 |CPS130 [A+
456 [CPS114]C

< Eliminates redundancy

< To get back to the original relation:

Unnecessary decomposition

SID |name email
142 |Bart bart@fox.com
123 [Milhouse |milhouse@fox.com

857 |Lisa lisa@fox.com
456 |Ralph ralph@fox.com

SID |name SID |email

142 |Bart 142 |bart@fox.com

123 [Milhouse 123 |miThouse@fox.com
857 |Lisa 857 [lisa@fox.com

456 |Ralph 456 |ralph@fox.com

+ Fine: join returns the original relation

< Unnecessary: no redundancy is removed, and now
SID is stored twice!

Bad decomposition

SID |CID grade
142 |CPS116|B-

142 |CPS114|B
123 |CPS116 [B+

SIp [cIp 857 |CPS116 A+ SID [grade
142 |CPS116 857 |CPS130 [A+ 142 |B-
142 [CPS114 456 _|CPS114]C 142 [B

123 [CPS116 123 [B+
857 [CPS116 857 A+
857 |CPS130

456 [CPS114 456

Lossless join decomposition

< Decompose relation R into relations § and T'
= attrs(R) = attrs(S) U attrs(T)
" 8= T (R)
- T = 7ratm(T) (R)
% The decomposition is a lossless join decomposition if,
given known constraints such as FD’s, we can
guarantee that R = S T

< Any decomposition gives R C § > T (why?)
= A lossy decomposition is one with R C S T

20

Loss? But I got more rows!

< “Loss” refers not to the loss of tuples, but to the loss
of information

® Or, the ability to distinguish different original relations

SID |CID grade No way to tell
142 [CPS116 (B which is the original relation
(I T S10 Jorade
142 [CPS116 857 |CPS116 AT R 3=
142 [cPs114 142 |8
123 [cPsii6 857RICRSTS01AY 123 [B+
857 [CPS1l6 L6RIGRS LG 857 A+
857 |CPS130
456 [cPs114

Questions about decomposition

% When to decompose

< How to come up with a correct decomposition (i.e.,
lossless join decomposition)

22

An answer: BCNF

% A relation R is in Boyce-Codd Normal Form if
= For every non-trivial FD X — Yin R, X is a super key
= That is, all FDs follow from “key — other attributes”

< When to decompose
= As long as some relation is not in BCNF
< How to come up with a correct decomposition
= Always decompose on a BCNF violation (details next)

@ Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

% Find a BCNF violation

® That is, a non-trivial FD X — Y'in R where X is not a
super key of R

< Decompose R into R, and R,, where
® R, has attributes X UY

® R, has attributes X U Z, where Z contains all attributes
of R that are in neither X nor Y’

< Repeat until all relations are in BCNF

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)
BCNF violation: SID — name, email

Student (SID, name, email) Grade (SID, CID, grade)
BCNF BCNF

Another example

StudentGrade (SID, name, email, CID, grade)

Why is BCNF decomposition lossless

Given non-trivial X — Yin R where X is not a super
key of R, need to prove:

< Anything we project always comes back in the join:
RC myy (R)M Ty, (R)
= Sure; and it doesn’t depend on the FD
< Anything that comes back in the join must be in the
original relation:
RO 7y (R)DI Ty, (R)
® Proof makes use of the fact that X =Y

Recap

< Functional dependencies: a generalization of the key
concept

< Non-key functional dependencies: a source of
redundancy

< BCNF decomposition: a method for removing
redundancies
= BNCF decomposition is a lossless join decomposition

% BCNF: schema in this normal form has no
redundancy due to FD’s

