

Announcements (September 13)

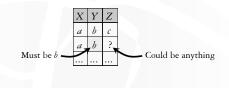
- Homework #1 due this Thursday
- * Course project assigned today
 - Choice of a "standard" or "open" course project
 - Two milestones (October 13 and November 10) and a final demo/report (December 6-13)

Motivation SID name CID 142 Bart CPS116 142 Bart CPS114 857 Lisa CPS116 857 Lisa CPS130 * How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)? This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking * How about a systematic approach to detecting and removing redundancy in designs?

Dependencies, decompositions, and normal forms

Functional dependencies

- * A functional dependency (FD) has the form $X \to Y$, where X and Y are sets of attributes in a relation R
- $X \to Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y



Keys redefined using FD's FD examples Address (street address, city, state, zip) \diamond street address, city, state \rightarrow zip \star zip \rightarrow city, state \diamond zip, state \rightarrow zip? This is a trivial FD • Trivial FD: LHS \supset RHS \diamond zip \rightarrow state, zip?

- This is non-trivial, but not completely non-trivial
- Completely non-trivial FD: LHS \cap RHS = \emptyset

- A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of *R*
 - That is, K is a "super key"
- \bullet No proper subset of *K* satisfies the above condition
 - That is, K is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

\bullet Does another FD follow from \mathcal{F} ?

- Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- * Is K a key of R?
 - What are all the keys of R?

Attribute closure

♦ Given *R*, a set of FD's \mathcal{F} that hold in *R*, and a set of attributes *Z* in *R*: The closure of *Z* (denoted *Z*⁺) with respect to \mathcal{F} is the set of all attributes {*A*₁, *A*₂, ...} functionally

determined by Z (that is, $Z \rightarrow A_1 A_2 \dots$)

- * Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

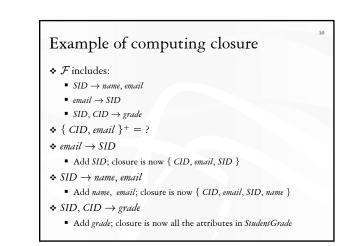
A more complex example

StudentGrade (SID, name, email, CID, grade)

SID \rightarrow name, email

- \bullet email \rightarrow SID
- SID, CID \rightarrow grade

(Not a good design, and we will see why later)



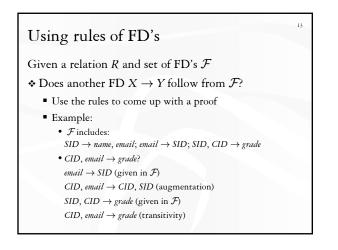
Using attribute closure

Given a relation R and set of FD's ${\mathcal F}$

- * Does another FD $X \to Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to ${\mathcal F}$
 - If $Y \subseteq X^+$, then $X \to Y$ follow from \mathcal{F}
- \bullet Is K a key of R?
 - Compute K^+ with respect to $\mathcal F$
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD's * Armstrong's axioms • Reflexivity: If $Y \subseteq X$, then $X \to Y$ • Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z • Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$ * Rules derived from axioms

- Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$

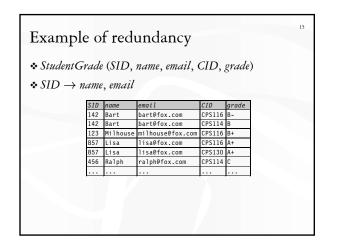


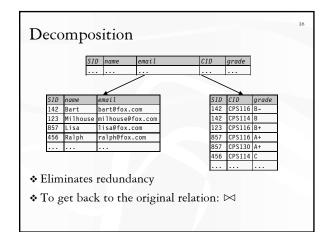
Non-key FD's

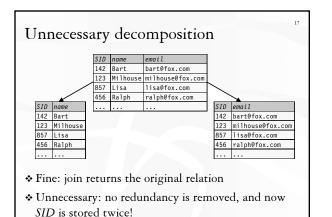
- ♦ Consider a non-trivial FD $X \to Y$ where X is not a super key
 - Since *X* is not a super key, there are some attributes (say *Z*) that are not functionally determined by *X*

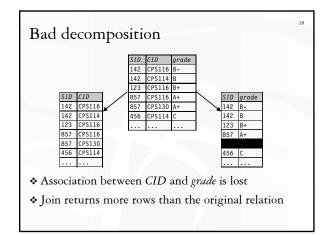
X	Y	Ζ
a	b	с1
d	b	с2

That a is always associated with b is recorded by multiple rows: redundancy, update anomaly, deletion anomaly







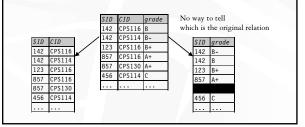


Lossless join decomposition

- * Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attrs(S)}(R)$
 - $T = \pi_{attrs(T)}(R)$
- ♦ The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R = S \bowtie T$
- Any decomposition gives R ⊆ S ⋈ T (why?)
 A lossy decomposition is one with R ⊂ S ⋈ T

Loss? But I got more rows!

- $\boldsymbol{\diamond}$ "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations



Questions about decomposition When to decompose How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- * A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \to Y$ in R, X is a super key

22

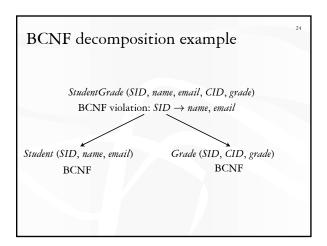
• That is, all FDs follow from "key \rightarrow other attributes"

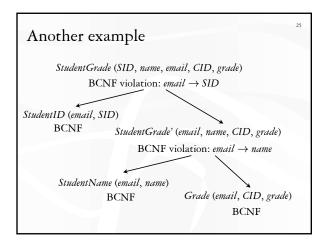
* When to decompose

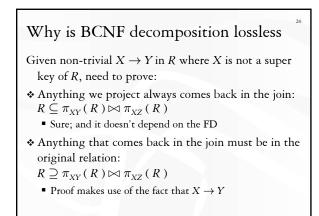
- As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- * Find a BCNF violation
 - That is, a non-trivial FD $X \to Y$ in R where X is not a super key of R
- * Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- * Repeat until all relations are in BCNF







Recap

Functional dependencies: a generalization of the key concept

27

- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's