SQL: Part II

CPS 116

Introduction to Database Systems

Announcements (September 20)

<+ Homework #2 assigned today
® Due in 9 days (September 29)

<+ Homework #1 sample solution available
® Hardcopies only

< Project Milestone #1 due in 23 days

= Come to my office hours if you want to chat about
project ideas

Incomplete information

< Example: Student (SID, name, age, GPA)

% Value unknown

® We do not know Nelson’s age
% Value not applicable

® Nelson has not taken any classes yet; what is his GPA?

Solution 1

% A dedicated special value for each domain (type)

® GPA cannot be —1, so use —1 as a special value to
indicate a missing or invalid GPA
® Leads to incorrect answers if not careful
e SELECT AVG(GPA) FROM Student;

= Complicates applications

e SELECT AVG(GPA) FROM Student
WHERE GPA <> -1;

= Remember the Y2K bug?

® “00” was used as a missing or invalid year value

Solution 2

< A valid-bit for every column
= Student (SID, name, name_is_valid,
age, age_is_valid,
GPA, GPA_is_valid)
= Complicates schema and queries

* SELECT AVG(GPA) FROM Student
WHERE GPA_is_valid;

SQL’s solution

% A special value NULL

= For every domain

= Special rules for dealing with NULL’s

< Example: Student (SID, name, age, GPA)
= (789, “Nelson”, NULL, NULL)

Computing with NULL’s

< When we operate on a NULL and another value
(including another NULL) using +, —, etc., the result
is NULL

« Aggregate functions ignore NULL, except COUNT (*)
(since it counts rows)

Three-valued logic

< TRUE = 1, FALSE = 0, UNKNOWN = 0.5

< x AND y = min(x, y)

% x ORy = max(x, y)

#NOTx =1-x

< When we compare a NULL with another value

(including another NULL) using =, >, etc., the
result is UNKNOWN

< WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
= UNKNOWN is not enough

Unfortunate consequences

« SELECT AVG(GPA) FROM Student;
SELECT SUM(GPA)/COUNT(*) FROM Student;
= Not equivalent
= Although AVG(GPA) = SUM(GPA) /COUNT (GPA) still
< SELECT * FROM Student;
SELECT * FROM Student WHERE GPA = GPA;
= Not equivalent

@ Be careful: NULL breaks many equivalences

10

Another problem

< Example: Who has NULL GPA values?
= SELECT * FROM Student WHERE GPA = NULL;

* Does not work; never returns anything
= (SELECT * FROM Student)
EXCEPT ALL
(SELECT * FROM Student WHERE GPA = GPA)
* Works, but ugly
= Introduced built-in predicates IS NULL and IS NOT NULL
¢ SELECT * FROM Student WHERE GPA IS NULL;

Outerjoin motivation

< Example: a master class list

= SELECT c.CID, c.title, s.SID, s.name
FROM Course c, Enroll e, Student s
WHERE c.CID = e.CID AND e.SID = s.SID;

= What if a class is empty?

= It may be reasonable for the master class list to include
empty classes as well

® For these classes, SID and name columns would be NULL

Outerjoin flavors and definitions

% A full outerjoin between R and § (denoted R &< §)
includes all rows in the result of R >< S, plus

= “Dangling” R rows (those that do not join with any §
rows) padded with NULL’s for §’s columns

= “Dangling” § rows (those that do not join with any R
rows) padded with NULL’s for R’s columns
< A left outerjoin (R ><¢ §) includes rows in R >4 § plus
dangling R rows padded with NULL’s
< A right outerjoin (R &< §) includes rows in R >< §
plus dangling § rows padded with NULL’s

Outerjoin examples

cID title SID
Conrse ><¢ Enrol/[CPS199 [Independent Study NULL
Course CPS130|Analysis of Algorithms |857
— CPS114 |Computer Networks 142
an__ i CPS1L4 |Computer Networks 456
CPS199 |Independent Study TID title S0
CPS130|Analysis of Algorithms CPS196 |NULL 142
CPS114 |Computer Networks CPS114 Computer Networks 142
CPS196 [NULL 123
Enroll Course 1 Enroll erSTogRU 557
fig glﬁgl% CPS130|Analysis of Algorithms |857
CPS114|Computer Networks 456
142 [CPS114
123 |CPS196 cip title SID
857 |CPS196 CPS199 |Independent Study NULL
857 |CPS130 CPS130[Analysis of Algorithms |857
456 |CPS114 Course < Enroll CPS114 |Computer Networks 142
CPS114 |Computer Networks 456
CPS196 |NULL 142
CPS196 [NULL 123
CPS196 |NULL 857

Outerjoin syntax

< SELECT * FROM Course LEFT OUTER JOIN Enroll
ON Course.CID = Enrol1.CID;

% SELECT * FROM Course RIGHT OUTER JOIN Enroll
ON Course.CID = Enrol1.CID;

% SELECT * FROM Course FULL OUTER JOIN Enroll
ON Course.CID = Enrol1.CID;
@ These are theta joins rather than natural joins
= Return all columns in Coxrse and Enroll

= Equivalent to Course ><¢,,,.. cip = gupo.cip Enroll, Conrse £

Enm.cip Enroll, and Course &< ¢,,p, cip = . ci> Enroll

Course.CID =

@ You can write regular (“inner”) joins using this syntax too:
SELECT * FROM Course JOIN Enroll ON Course.CID = Enrol1.CID;

Summary of SQL features covered so far

< SELECT-FROM-WHERE statements
+ Set and bag operations

+ Table expressions, subqueries

< Aggregation and grouping

< Ordering

< NULL’s and outerjoins

@ Next: data modification statements, constraints

INSERT

< Insert one row

= INSERT INTO Enroll VALUES (456, 'CPS116');
¢ Student 456 takes CPS116

< Insert the result of a query
= INSERT INTO Enroll
(SELECT SID, 'CPS116' FROM Student
WHERE SID NOT IN (SELECT SID FROM Enroll
WHERE CID = 'CPS116'));
* Force everybody to take CPS116

DELETE

% Delete everything
= DELETE FROM Enroll;

% Delete according to a WHERE condition

Example: Student 456 drops CPS116
= DELETE FROM Enroll
WHERE SID = 456 AND CID = 'CPS116';

Example: Drop students from all CPS classes with GPA
lower than 1.0

= DELETE FROM Enroll
WHERE SID IN (SELECT SID FROM Student
WHERE GPA < 1.0)
AND CID LIKE 'CPS%';

UPDATE

< Example: Student 142 changes name to “Barney”
= UPDATE Student
SET name = 'Barney'
WHERE SID = 142;

< Example: Let’s be “fair”?
= UPDATE Student
SET GPA = (SELECT AVG(GPA) FROM Student);

* But update of every row causes average GPA to change!
* Average GPA is computed over the old Student table

Constraints

% Restrictions on allowable data in a database

= In addition to the simple structure and type restrictions
imposed by the table definitions

= Declared as part of the schema
= Enforced by the DBMS
< Why use constraints?
® Protect data integrity (catch errors)

® Tell the DBMS about the data (so it can optimize better)

20

Types of SQL constraints

< NOT NULL

< Key

< Referential integrity (foreign key)
< General assertion

% Tuple- and attribute-based CHECK’s

NOT NULL constraint examples

% CREATE TABLE Student
(SID INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
email VARCHAR(30),
age INTEGER,
GPA FLOAT);
< CREATE TABLE Course
(CID CHAR(10) NOT NULL,
title VARCHAR(100) NOT NULL);
 CREATE TABLE EnrolT
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL);

22

Key declaration

< At most one PRIMARY KEY per table
= Typically implies a primary index
= Rows are stored inside the index, typically sorted by the
primary key value = best speedup for queries
< Any number of UNIQUE keys per table
= Typically implies a secondary index

= Pointers to rows are stored inside the index = less
speedup for queries

Key declaration examples

+ CREATE TABLE Student
(SID INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL, S oThston Oracle
email VARCHAR(30) UNIQUE, < . 1o: DB2:

age INTEGER, DB2 requires UNI
i quires QUE
GPA FLOAT); key columns

« CREATE TABLE Course
(CID CHAR(10) NOT NULL PRIMARY Key, ©PeNOTNULL
title VARCHAR(100) NOT NULL);
+ CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID));

This form is required for multi-attribute keys

Referential integrity example

% Enroll.SID references Student.SID

= If an SID appears in Enroll, it must appear in Student
< Enroll.CID references Course.CID

= If a CID appears in Enroll, it must appear in Course

@ That is, no “dangling pointers”

Student Enroll Course

SID [name age [GPA sIp [cID cIp title

142 *m& -3 142 |CPS196 CPS196 [Intro. to Database Systems
123 Milhouse |10 |3.T [—

857 =k 8 T3 —

857 |CPS130

142 |CPS114 CPS130|Analysis of Algorithms
123 |CPS196 CPS114 [Computer Networks

456 YRalph 18—12.3 —|857 |CPS196

456 [CPS114

Referential integrity in SQL

% Referenced column(s) must be PRIMARY KEY
% Referencing column(s) form a FOREIGN KEY
< Example
= CREATE TABLE Enroll
(SID INTEGER NOT NULL
REFERENCES Student(SID),
CID CHAR(10) NOT NULL,

PRIMARY KEY(SID, CID),
FOREIGN KEY CID REFERENCES Course(CID));

Enforcing referential integrity

Example: Enroll.SID references Student.SID
% Insert or update an Enrol/ row so it refers to a non-
existent SID
= Reject
% Delete or update a Szudent row whose SID is
referenced by some Enroll row
" Reject
= Cascade: ripple changes to all referring rows
= Set NULL: set all references to NULL
= All three options can be specified in SQL

Deferred constraint checking

% No-chicken-no-egg problem
= CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
chair CHAR(30) NOT NULL REFERENCES Prof(name));
CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
dept CHAR(20) NOT NULL REFERENCES Dept(name));

= The first INSERT will always violate a constraint
% Deferred constraint checking is necessary
= Check only at the end of a transaction
= Allowed in SQL as an option
% Curious how the schema was created in the first place?
= ALTER TABLE ADD CONSTRAINT (read the manual!)

28

General assertion

< CREATE ASSERTION assertion_name
CHECK assertion_condition;

< assertion_condition is checked for each modification
that could potentially violate it

< Example: Enroll.SID references Student.SID

= CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (NOT EXISTS
(SELECT * FROM Enroll
WHERE SID NOT IN
(SELECT SID FROM Student)));

= In SQL3, but not all (perhaps no) DBMS supports it

Tuple- and attribute-based CHECK’s

% Associated with a single table

< Only checked when a tuple or an attribute is
inserted or updated
< Example:
= CREATE TABLE Enroll
(SID INTEGER NOT NULL

CHECK (SID IN (SELECT SID FROM Student)),
CId ...);

® Is it a referential integrity constraint?

= Not quite; not checked when Student is modified

Summary of SQL features covered so far

< Query
= SELECT-FROM-WHERE statements
= Set and bag operations
= Table expressions, subqueries
= Aggregation and grouping
= Ordering
= Quterjoins
% Modification
= INSERT/DELETE/UPDATE

< Constraints

@ Next: triggers, views, indexes

