
1

SQL: Part II

CPS 116

Introduction to Database Systems

2

Announcements (September 20)

Homework #2 assigned today
Due in 9 days (September 29)

Homework #1 sample solution available
Hardcopies only

Project Milestone #1 due in 23 days
Come to my office hours if you want to chat about 
project ideas

3

Incomplete information

Example: Student (SID, name, age, GPA)

Value unknown
We do not know Nelson’s age

Value not applicable
Nelson has not taken any classes yet; what is his GPA?

4

Solution 1

A dedicated special value for each domain (type)
GPA cannot be –1, so use –1 as a special value to 
indicate a missing or invalid GPA

Leads to incorrect answers if not careful
• SELECT AVG(GPA) FROM Student;

Complicates applications
• SELECT AVG(GPA) FROM Student

WHERE GPA <> -1;

Remember the Y2K bug?
• “00” was used as a missing or invalid year value

5

Solution 2

A valid-bit for every column
Student (SID, name, name_is_valid,

age, age_is_valid,
GPA, GPA_is_valid)

Complicates schema and queries
• SELECT AVG(GPA) FROM Student

WHERE GPA_is_valid;

6

SQL’s solution

A special value NULL
For every domain

Special rules for dealing with NULL’s

Example: Student (SID, name, age, GPA)
h 789, “Nelson”, NULL, NULL i



2

7

Computing with NULL’s

When we operate on a NULL and another value 
(including another NULL) using +, –, etc., the result 
is NULL

Aggregate functions ignore NULL, except COUNT(*)
(since it counts rows)

8

Three-valued logic

TRUE = 1, FALSE = 0, UNKNOWN = 0.5
x AND y = min(x, y)
x OR y = max(x, y)
NOT x = 1 – x
When we compare a NULL with another value 
(including another NULL) using =, >, etc., the 
result is UNKNOWN
WHERE and HAVING clauses only select rows for 
output if the condition evaluates to TRUE

UNKNOWN is not enough

9

Unfortunate consequences

SELECT AVG(GPA) FROM Student;
SELECT SUM(GPA)/COUNT(*) FROM Student;

Not equivalent

Although AVG(GPA) = SUM(GPA)/COUNT(GPA) still

SELECT * FROM Student;
SELECT * FROM Student WHERE GPA = GPA;

Not equivalent

Be careful: NULL breaks many equivalences

10

Another problem

Example: Who has NULL GPA values?
SELECT * FROM Student WHERE GPA = NULL;

• Does not work; never returns anything

(SELECT * FROM Student)
EXCEPT ALL
(SELECT * FROM Student WHERE GPA = GPA)

• Works, but ugly

Introduced built-in predicates IS NULL and IS NOT NULL
• SELECT * FROM Student WHERE GPA IS NULL;

11

Outerjoin motivation

Example: a master class list
SELECT c.CID, c.title, s.SID, s.name
FROM Course c, Enroll e, Student s
WHERE c.CID = e.CID AND e.SID = s.SID;

What if a class is empty?

It may be reasonable for the master class list to include 
empty classes as well

• For these classes, SID and name columns would be NULL

12

Outerjoin flavors and definitions

A full outerjoin between R and S (denoted R S) 
includes all rows in the result of R S, plus

“Dangling” R rows (those that do not join with any S
rows) padded with NULL’s for S’s columns

“Dangling” S rows (those that do not join with any R
rows) padded with NULL’s for R’s columns

A left outerjoin (R S) includes rows in R S plus 
dangling R rows padded with NULL’s

A right outerjoin (R S) includes rows in R S
plus dangling S rows padded with NULL’s



3

13

Outerjoin examples

SID CID
142 CPS196
142 CPS114
123 CPS196
857 CPS196
857 CPS130
456 CPS114

CID title
CPS199 Independent Study
CPS130 Analysis of Algorithms
CPS114 Computer Networks

Course

Enroll

Course Enroll
CID title SID
CPS199 Independent Study NULL
CPS130 Analysis of Algorithms 857
CPS114 Computer Networks 142
CPS114 Computer Networks 456

Course Enroll

CID title SID
CPS196 NULL 142
CPS114 Computer Networks 142
CPS196 NULL 123
CPS196 NULL 857
CPS130 Analysis of Algorithms 857
CPS114 Computer Networks 456

CID title SID
CPS199 Independent Study NULL
CPS130 Analysis of Algorithms 857
CPS114 Computer Networks 142
CPS114 Computer Networks 456
CPS196 NULL 142
CPS196 NULL 123
CPS196 NULL 857

Course Enroll

14

Outerjoin syntax
SELECT * FROM Course LEFT OUTER JOIN Enroll

ON Course.CID = Enroll.CID;
SELECT * FROM Course RIGHT OUTER JOIN Enroll

ON Course.CID = Enroll.CID;
SELECT * FROM Course FULL OUTER JOIN Enroll

ON Course.CID = Enroll.CID; 

These are theta joins rather than natural joins
Return all columns in Course and Enroll

Equivalent to Course Course.CID = Enroll.CID Enroll, Course Course.CID = 

Enroll.CID Enroll, and Course Course.CID = Enroll.CID Enroll

You can write regular (“inner”) joins using this syntax too:
SELECT * FROM Course JOIN Enroll ON Course.CID = Enroll.CID;

15

Summary of SQL features covered so far

SELECT-FROM-WHERE statements

Set and bag operations

Table expressions, subqueries

Aggregation and grouping

Ordering

NULL’s and outerjoins

Next: data modification statements, constraints

16

INSERT

Insert one row

INSERT INTO Enroll VALUES (456, ’CPS116’);

• Student 456 takes CPS116

Insert the result of a query

INSERT INTO Enroll
(SELECT SID, ’CPS116’ FROM Student
WHERE SID NOT IN (SELECT SID FROM Enroll

WHERE CID = ’CPS116’));

• Force everybody to take CPS116

17

DELETE
Delete everything

DELETE FROM Enroll;

Delete according to a WHERE condition

Example: Student 456 drops CPS116
DELETE FROM Enroll
WHERE SID = 456 AND CID = ’CPS116’;

Example: Drop students from all CPS classes with GPA 
lower than 1.0

DELETE FROM Enroll
WHERE SID IN (SELECT SID FROM Student

WHERE GPA < 1.0)
AND CID LIKE ’CPS%’;

18

UPDATE

Example: Student 142 changes name to “Barney”
UPDATE Student
SET name = ’Barney’
WHERE SID = 142;

Example: Let’s be “fair”?
UPDATE Student
SET GPA = (SELECT AVG(GPA) FROM Student);
• But update of every row causes average GPA to change!

• Average GPA is computed over the old Student table



4

19

Constraints

Restrictions on allowable data in a database
In addition to the simple structure and type restrictions 
imposed by the table definitions

Declared as part of the schema

Enforced by the DBMS

Why use constraints?
Protect data integrity (catch errors)

Tell the DBMS about the data (so it can optimize better)

20

Types of SQL constraints

NOT NULL

Key

Referential integrity (foreign key)

General assertion

Tuple- and attribute-based CHECK’s

21

NOT NULL constraint examples
CREATE TABLE Student
(SID INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
email VARCHAR(30),
age INTEGER,
GPA FLOAT);

CREATE TABLE Course
(CID CHAR(10) NOT NULL,
title VARCHAR(100) NOT NULL);

CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL);

22

Key declaration

At most one PRIMARY KEY per table
Typically implies a primary index

Rows are stored inside the index, typically sorted by the 
primary key value ⇒ best speedup for queries

Any number of UNIQUE keys per table
Typically implies a secondary index

Pointers to rows are stored inside the index ⇒ less 
speedup for queries

23

Key declaration examples
CREATE TABLE Student
(SID INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
email VARCHAR(30) UNIQUE,
age INTEGER,
GPA FLOAT);

CREATE TABLE Course
(CID CHAR(10) NOT NULL PRIMARY KEY,
title VARCHAR(100) NOT NULL);

CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID));

Works on Oracle
but not DB2:
DB2 requires UNIQUE
key columns
to be NOT NULL

This form is required for multi-attribute keys

24

Referential integrity example

Enroll.SID references Student.SID
If an SID appears in Enroll, it must appear in Student

Enroll.CID references Course.CID
If a CID appears in Enroll, it must appear in Course

That is, no “dangling pointers”

Student CourseEnroll

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
... ... ... ...

CID title
CPS196 Intro. to Database Systems
CPS130 Analysis of Algorithms
CPS114 Computer Networks
... ...

SID CID
142 CPS196
142 CPS114
123 CPS196
857 CPS196
857 CPS130
456 CPS114
... ...



5

25

Referential integrity in SQL

Referenced column(s) must be PRIMARY KEY
Referencing column(s) form a FOREIGN KEY

Example
CREATE TABLE Enroll
(SID INTEGER NOT NULL
REFERENCES Student(SID),
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID),
FOREIGN KEY CID REFERENCES Course(CID));

26

Enforcing referential integrity 

Example: Enroll.SID references Student.SID

Insert or update an Enroll row so it refers to a non-
existent SID

Reject

Delete or update a Student row whose SID is 
referenced by some Enroll row

Reject

Cascade: ripple changes to all referring rows

Set NULL: set all references to NULL

All three options can be specified in SQL

27

Deferred constraint checking
No-chicken-no-egg problem

CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
chair CHAR(30) NOT NULL REFERENCES Prof(name));

CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
dept CHAR(20) NOT NULL REFERENCES Dept(name));

The first INSERT will always violate a constraint

Deferred constraint checking is necessary
Check only at the end of a transaction
Allowed in SQL as an option

Curious how the schema was created in the first place?
ALTER TABLE ADD CONSTRAINT (read the manual!)

28

General assertion

CREATE ASSERTION assertion_name
CHECK assertion_condition;
assertion_condition is checked for each modification 
that could potentially violate it

Example: Enroll.SID references Student.SID
CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (NOT EXISTS

(SELECT * FROM Enroll
WHERE SID NOT IN
(SELECT SID FROM Student)));

In SQL3, but not all (perhaps no) DBMS supports it

29

Tuple- and attribute-based CHECK’s

Associated with a single table

Only checked when a tuple or an attribute is 
inserted or updated

Example:
CREATE TABLE Enroll
(SID INTEGER NOT NULL

CHECK (SID IN (SELECT SID FROM Student)),
CID ...);

Is it a referential integrity constraint?

Not quite; not checked when Student is modified

30

Summary of SQL features covered so far
Query

SELECT-FROM-WHERE statements
Set and bag operations
Table expressions, subqueries
Aggregation and grouping
Ordering
Outerjoins

Modification
INSERT/DELETE/UPDATE

Constraints

Next: triggers, views, indexes 


