
1

SQL: Programming

CPS 116

Introduction to Database Systems

2

Announcements (September 29)

Homework #2 due today
Sample solution available next Tuesday

Homework #1 graded
Please verify your score on Blackboard

See me or Ming if you have further questions

Sample midterm (from last year) available
Solution available next Tuesday

Midterm in class next Thursday
Format similar to the sample midterm

Covers everything up to next Tuesday’s lecture

Emphasizes on materials exercised in homeworks

3

Motivation

Pros and cons of SQL
Very high-level, possible to optimize

Not intended for general-purpose computation

Solutions
Augment SQL with constructs from general-purpose
programming languages (SQL/PSM)

Use SQL together with general-purpose programming
languages (JDBC, embedded SQL, etc.)

2

4

Impedance mismatch and a solution
SQL operates on a set of records at a time
Typical low-level general-purpose programming languages
operates on one record at a time
Solution: cursor

Open (a table or a result table): position the cursor just before the
first row
Get next: move the cursor to the next row and return that row;
raise a flag if there is no such row
Close: clean up and release DBMS resources
Found in virtually every database language/API (with slightly
different syntaxes)
Some support more cursor positioning and movement options,
modification at the current cursor position (analogous to the view
update problem), etc.

5

Augmenting SQL: SQL/PSM

PSM = Persistent Stored Modules

CREATE PROCEDURE proc_name (parameter_declarations)
local_declarations
procedure_body;
CREATE FUNCTION func_name (parameter_declarations)
RETURNS return_type
local_declarations
procedure_body;
CALL proc_name (parameters);

Inside procedure body:
SET variable = CALL func_name (parameters);

6

SQL/PSM example
CREATE FUNCTION SetMaxGPA(IN newMaxGPA FLOAT)

RETURNS INT
-- Enforce newMaxGPA; return number of rows modified.

BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisGPA FLOAT;
-- A cursor to range over all students:
DECLARE studentCursor CUSOR FOR

SELECT GPA FROM Student
FOR UPDATE;
-- Set a flag whenever there is a “not found” exception:
DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET noMoreRows = 1;
… (see next slide) …
RETURN rowsUpdated;

END

3

7

SQL/PSM example continued
-- Fetch the first result row:
OPEN studentCursor;
FETCH FROM studentCursor INTO thisGPA;
-- Loop over all result rows:
WHILE noMoreRows <> 1 DO

IF thisGPA > newMaxGPA THEN
-- Enforce newMaxGPA:
UPDATE Student SET Student.GPA = newMaxGPA
WHERE CURRENT OF studentCursor;
-- Update count:
SET rowsUpdated = rowsUpdated + 1;

END IF;
-- Fetch the next result row:
FETCH FROM studentCursor INTO thisGPA;

END WHILE;
CLOSE studentCursor;

8

Other SQL/PSM features

Assignment using scalar query results
SELECT INTO

Other loop constructs
FOR, REPEAT UNTIL, LOOP

Flow control
GOTO

Exceptions
SIGNAL, RESIGNAL

9

Interfacing SQL with another language

API approach
SQL commands are sent to the DBMS at runtime

Examples: JDBC, ODBC (for C/C++/VB), Perl DBI

These API’s are all based on the SQL/CLI (Call-Level
Interface) standard

Embedded SQL approach
SQL commands are embedded in application code

A precompiler checks these commands at compile-time
and converts them into DBMS-specific API calls

Examples: embedded SQL for C/C++, SQLJ (for Java)

4

10

Example API: JDBC

JDBC (Java DataBase Connectivity) is an API that allows a
Java program to access databases

…
// Use the JDBC package:
import java.sql.*;
…
public class … {

…
static {

// Load the JDBC driver:
Class.forName(”COM.ibm.db2.jdbc.net.DB2Driver”);
…

}
…

}

11

Connections
…
// Connection URL is a DBMS-specific string:
String url =

”jdbc:db2://rack40.cs.duke.edu/dbcourse”;
// Making a connection:
Connection con =

DriverManager.getConnection(url);
…
// Closing a connection:
con.close();
…

12

Statements
…
// Create an object for sending SQL statements:
Statement stmt = con.createStatement();
// Execute a query and get its results:
ResultSet rs =

stmt.executeQuery(”SELECT SID, name FROM Student”);
// Work on the results:
…
// Execute a modification (returns the number of rows affected):
int rowsUpdated =

stmt.executeUpdate
(”UPDATE Student SET name = ’Barney’ WHERE SID = 142”);

// Close the statement:
stmt.close();
…

5

13

Query results
…
// Execute a query and get its results:
ResultSet rs =

stmt.executeQuery(”SELECT SID, name FROM Student”);
// Loop through all result rows:
while (rs.next()) {

// Get column values:
int sid = rs.getInt(1);
String name = rs.getString(2);
// Work on sid and name:
…

}
// Close the ResultSet:
rs.close();
…

14

Other ResultSet features

Move the cursor (pointing to the current row)
backwards and forwards, or position it anywhere
within the ResultSet
Update/delete the database row corresponding to
the current result row

Analogous to the view update problem

Insert a row into the database
Analogous to the view update problem

15

Prepared statements: motivation
…
Statement stmt = con.createStatement();
for (int age=0; age<100; age+=10) {

ResultSet rs = stmt.executeQuery
(”SELECT AVG(GPA) FROM Student” +
” WHERE age >= ” + age + ” AND age < ” + (age+10));

// Work on the results:
…

}
…

Every time an SQL string is sent to the DBMS, the DBMS
must perform parsing, semantic analysis, optimization,
compilation, and then finally execution
These costs are incurred 10 times in the above example,
even though all strings are essentially the same query (with
different parameter values)

6

16

Prepared statements: syntax
…
// Prepare the statement, using ? as placeholders for actual parameters:
PreparedStatement stmt = con.prepareStatement

(”SELECT AVG(GPA) FROM Student WHERE age >= ? AND age < ?”);
for (int age=0; age<100; age+=10) {

// Set actual parameter values:
stmt.setInt(1, age);
stmt.setInt(2, age+10);
ResultSet rs = stmt.executeQuery();
// Work on the results:
…

}
…

The DBMS performs parsing, semantic analysis,
optimization, and compilation only once, when it prepares
the statement
At execution time, the DBMS only needs to check
parameter types and validate the compiled execution plan

17

Transaction processing
Set isolation level for the current transaction

con.setTransactionIsolationLevel(l);
Where l is one of TRANSACTION_SERIALIZABLE (default),
TRANSACTION_REPEATABLE_READ, TRANSACTION_READ_COMITTED, and
TRANSACTION_READ_UNCOMMITTED

Set the transaction to be read-only or read/write (default)
con.setReadOnly(true|false);

Turn on/off AUTOCOMMIT (commits every single statement)
con.setAutoCommit(true|false);

Commit/rollback the current transaction (when
AUTOCOMMIT is off)

con.commit();
con.rollback();

18

Odds and ends of JDBC

Most methods can throw SQLException
Make sure your code catches them
getSQLState() returns the standard SQL error code

getMessage() returns the error message

Methods for examining metadata in databases

Methods to retrieve the value of a column for all result rows
into an array without calling ResultSet.next() in a loop

Methods to construct and execute a batch of SQL
statements together

…

7

19

JDBC drivers – Types I, II

Type I (bridge): translate JDBC calls to a standard
API not native to the DBMS (e.g., JDBC-ODBC
bridge)

Driver is easy to build using existing standard API’s

Extra layer of API adds overhead

Type II (native API, partly Java): translates JDBC
calls to DBMS-specific client API calls

DBMS-specific client library needs to be installed on
each client

Good performance

20

JDBC drivers – Types III, IV

Type III (network bridge): sends JDBC requests to a
middleware server which in turn communicates with a
database

Client JDBC driver is completely Java, easy to build, and does not
need to be DBMS-specific

Middleware adds translation overhead

Type IV (native protocol, full Java): converts JDBC
requests directly to native network protocol of the DBMS

Client JDBC driver is completely Java but is also DBMS-specific

Good performance

21

Embedded C example
…
/* Declare variables to be “shared” between the application

and the DBMS: */
EXEC SQL BEGIN DECLARE SECTION;
int thisSID; float thisGPA;
EXEC SQL END DECLARE SECTION;
/* Declare a cursor: */
EXEC SQL DECLARE CPS116Student CURSOR FOR

SELECT SID, GPA FROM Student
WHERE SID IN

(SELECT SID FROM Enroll WHERE CID = ’CPS116’)
FOR UPDATE;

…

8

22

Embedded C example continued
/* Open the cursor: */
EXEC SQL OPEN CPS116Student;
/* Specify exit condition: */
EXEC SQL WHENEVER NOT FOUND DO break;
/* Loop through result rows: */
while (1) {

/* Get column values for the current row: */
EXEC SQL FETCH CPS116Student INTO :thisSID, :thisGPA;
printf(”SID %d: current GPA is %f\n”, thisSID, thisGPA);
/* Update GPA: */
printf(”Enter new GPA: ”);
scanf(”%f”, &thisGPA);
EXEC SQL UPDATE Student SET GPA = :thisGPA

WHERE CURRENT OF CPS116Student;
}
/* Close the cursor: */
EXEC SQL CLOSE CPS116Student;

23

Pros and cons of embedded SQL

Pros
More compile-time checking (syntax, type, schema, …)

Code could be more efficient (if the embedded SQL
statements do not need to checked and recompiled at
run-time)

Cons
DBMS-specific

• Vendors have different precompilers which translate code into
different native API’s

• Application executable is not portable (although code is)

• Application cannot talk to different DBMS at the same time

24

Pros and cons of augmenting SQL

Cons
Already too many programming languages
SQL is already too big
General-purpose programming constructs complicate
optimization, and make it difficult to tell if code running
inside the DBMS is safe
At some point, one must recognize that SQL and the
DBMS engine are not for everything!

Pros
More sophisticated stored procedures and triggers
More application logic can be pushed closer to data

