Relational Database Design Theory Part II

CPS 116
Introduction to Database Systems

Announcements (October 13)

Midterm graded; sample solution available

- Please verify your grades on Blackboard
* Project milestone \# 1 due today

Review

* Functional dependencies
- $X \rightarrow Y$: If two rows agree on X, they must agree on Y
\square A generalization of the key concept
* Non-key functional dependencies: a source of redundancy
- Non-trivial $X \rightarrow Y$ where X is not a superkey

Called a BCNF violation

* BCNF decomposition: a method for removing redundancies
- Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into $R_{1}(X, Y)$ and $R_{2}(X, Z)$
A lossless join decomposition
* Schema in BCNF has no redundancy due to FD's

Next

3NF (BCNF is too much)

* Multivalued dependencies: another source of redundancy
* 4NF (BCNF is not enough)

Motivation for 3NF

- Address (street_address, city, state, zip)
- street_address, city, state \rightarrow zip
- zip \rightarrow city, state
* Keys
- \{street_address, city, state\}
- \{street_address, zip\}
* BCNF?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

To decompose or not to decompose

\qquad
Address ${ }_{1}$ (zip, city, state)
Address ${ }_{2}$ (street_address, zip)
\qquad

* FD's in Address ${ }_{1}$
- zip \rightarrow city, state \qquad
* FD's in Address ${ }_{2}$
- None!
\Varangle Hey, where is street_address, city, state $\rightarrow z i p$?
- Cannot check without joining $A d d r e s s_{1}$ and $A d d r e s s_{2}$ back together
* Problem: Some lossless join decomposition is not dependency-preserving
$*$ Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?

3NF

$* R$ is in Third Normal Form (3NF) if for every non-trivial FD $X \rightarrow A$ (where A is single attribute), either

- X is a superkey of R, or
- A is a member of at least one key of R

Intuitively, BCNF decomposition on $X \rightarrow A$ would "break" the key containing A

* So Address is already in 3 NF
* Tradeoff:
- Can enforce all original FD's on individual decomposed relations
- Might have some redundancy due to FD's

BNCF $=$ no redundancy?

* Student (SID, CID, club)
- Suppose your classes have nothing to do with the clubs you join
- FD's?
- BNCF?
- Redundancies?

SID	CID	club
142	CPS116	ballet
142	CPS116	sumo
142	CPS114	ballet
142	CPS114	sumo
123	CPS116	chess
123	CPS116	golf
\ldots	\ldots	\ldots

Multivalued dependencies

* A multivalued dependency (MVD) has the form $X>Y$, where X and Y are sets of attributes in a relation R
$* X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

MVD examples

Student (SID, CID, club)

* SID \rightarrow CID

Complete MVD + FD rules

\qquad
$*$ FD reflexivity, augmentation, and transitivity

* MVD complementation: If $X \rightarrow Y$, then $X \rightarrow \operatorname{attrs}(R)-X-Y$
* MVD augmentation:

If $X \rightarrow Y$ and $V \subseteq W$, then $X W \rightarrow Y V$

* MVD transitivity:

If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z-Y$
$*$ Replication (FD is MVD): If $X \rightarrow Y$, then $X \rightarrow Y \quad$ Try proving things using these!

* Coalescence:

If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$

An elegant solution: chase

\nLeftarrow Given a set of FD's and MVD's \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D} ?
\qquad
$\%$ Procedure

- Start with the hypothesis of d, and treat them as "seed" tuples in a relation
- Apply the given dependencies in \mathcal{D} repeatedly
- If we apply an FD, we infer equality of two symbols
- If we apply an MVD, we infer more tuples \qquad
- If we infer the conclusion of d, we have a proof
- Otherwise, if nothing more can be inferred, we have a counterexample
\qquad
\qquad

Proof by chase

\star In $R(A, B, C, D)$, does $A>B$ and $B>C$ imply that $A \rightarrow C$?

Another proof by chase
\Varangle In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have			
Need			
A	B	C	D
a	$b 1$	$c 1$	$d 1$
a	$b 2$	$c 2$	$d 2$

$$
\begin{array}{ll}
A \rightarrow B & b 1=b 2 \\
B \rightarrow C & c 1=c 2
\end{array}
$$

In general, both new tuples and new equalities may be generated

Counterexample by chase

\star In $R(A, B, C, D)$, does $A \rightarrow B C$ and $C D \rightarrow B$ imply that $A \rightarrow B$?
$A \rightarrow B C$

Have			
A	B	C	D
a	$b 1$	${ }^{\text {cl }}$	d1
a	b^{2}	c^{2}	d2
a	${ }^{2} 2$	c2	${ }^{1} 1$
a	$b 1$	c1	d2

Need
$b 1=b 2$

Counterexample!

4NF

* A relation R is in Fourth Normal Form (4NF) if
- For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
- That is, all FD's and MVD's follow from "key \rightarrow other attributes" (i.e., no MVD's, and no FD's besides key functional dependencies)

4 NF is stronger than BCNF

- Because every FD is also a MVD

4NF decomposition algorithm

\qquad

* Find a 4NF violation
- A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
* Decompose R into R_{1} and R_{2}, where
- R_{1} has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z(Z$ contains attributes not in X or $Y)$
\therefore Repeat until all relations are in 4 NF
* Almost identical to BCNF decomposition algorithm
* Any decomposition on a 4 NF violation is lossless

$3 \mathrm{NF}, \mathrm{BCNF}, 4 \mathrm{NF}$, and beyond			
Anomaly/normal form 3NF BCNF 4NF Lose FD's? No Possible Redundancy due to FD's Possible No Redundancy due to MVD's Possible Possible			

\Varangle Of historical interests

- 1 NF : All column values must be atomic
- 2NF: Slightly more relaxed than 3NF

Summary

* Philosophy behind BCNF, 4NF:

Data should depend on the key, the whole key, and nothing but the key!
\star Philosophy behind 3NF:
... But not at the expense of more expensive constraint enforcement!

