XML, DTD, and XPath

CPS 116

Introduction to Database Systems

Announcements (October 18)

< Homework #3 will be assigned Thursday

... No news is good news. ..

From HTML to XML (eXtensible Markup Language)

% HTML describes the presentation of the content
<h1>Bibliography</h1>

3

to L% G
<p><i>Foundations of Databases</i> —— —
Abiteboul, Hull, and Vianu Bibli L

Addison Wesley, 1995 1bliography
P> Foundations of Dasabases , Abcbod, Hull Vaen

< XML describes only the content Stee e, e
Diata o the Web , Abteboud, Bunersan, Secns.
<bibliography> Mergen Fufinen, 155
<book>

<title>Foundations of Databases</title> = N BN

<author>Abiteboul</author>

<author>Hul1</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>

<book>..</book>

</bibliography>

@ Separation of content from presentation simplifies content extraction
and allows the same content to be presented easily in different looks

Other nice features of XML

+ Portability: Just like HTML, you can ship XML
data across platforms

= Relational data requires heavy-weight protocols, e.g.,
JDBC

+ Flexibility: You can represent any information
(structured, semi-structured, documents, ...)
® Relational data is best suited for structured data
< Extensibility: Since data describes itself, you can
change the schema easily

= Relational schema is rigid and difficult to change

XML terminology
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<is_textbook/>
o 3 <author>Abiteboul</author>
% Tag names: book, title, ... B i
<author>Vianu</author>
. <publisher>Addison Hesley</publisher>
« Start tags: <b00 k>, <ti t] e>, Ce e Dyeariosse/year>
e

<+ End tags: </book>, </title>, /"™
< An element is enclosed by a pair of start and end

tags: <book>..</book>

= Elements can be nested:

<book>..<title>.</title>.</book>
= Empty elements: <is_textbook></is_textbook>
* Can be abbreviated: <is_textbook/>

Elements can also have attributes: <book ISBN=".."

price="80.00">

Well-formed XML documents

A well-formed XML document

< Follows XML lexical conventions
" Wrong: <section>We show that x < 0..</section>
" Right: <section>We show that x &It; 0.</section>
* Other special entities: > becomes > ; and & becomes &
< Contains a single root element
% Has tags that are properly matched and elements that are
properly nested
= Right:
<section>..<subsection>.</subsection>..</section>
®* Wrong:
<section>..<subsection>.</section>..</subsection>

More XML features

&

% Comments: <!-- Comments here -->
» CDATA: <! [CDATA[Tags: <book>,..]]1>

% ID’s and references
<person id="012"><name>Homer</name>..</person>
i 34"><name>Marge</name>..</person>
<person id="056" father="012" mother="034"><name>Bart</name>..</person>..

o<

33

o<

» Namespaces allow external schemas and qualified names

<book xmIns:myCitationStyle="http://../mySchema">
<myCitationStyle:title>.</myCitationStyle:title>
<myCitationStyle:author>..</myCitationStyle:author>..

</book>

<>

» Processing instructions for apps: <? ...java appler... 7>

% And more...

8
Valid XML documents
% A valid XML document conforms to a Document Type
Definition (DTD)
= A DTD is optional
< A DTD specifies
= A grammar for the document
= Constraints on structures and values of elements, attributes, etc.
< Example
<IDOCTYPE bibliography [
<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN CDATA #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<IELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<IELEMENT year (#PCDATA)>
<!ELEMENT section (title, (#PCDATA)?, section*)>
1>
9
DTD explained
<IDOCTYPE bibliography [
bibliography is the root element of the document
<!ELEMENT bibliography (book+)>
[s grap)’. (‘)—>Oneorm0re
bib1iography consists of a sequence of one or more book elements
<!ELEMENT book (title, author*, publisher?, year?, section*)>
——» Zero or one
Zero or more
book consists of a tit1e, zero or more authors,
an optional publisher, and zero or more sections, in sequence
<IATTLIST book ISBN ID #REQUIRED>
book has a required ISBN attribute which is a unique identifier
<IATTLIST book price CDATA #IMPLIED> loliosiaphys o on orice-rg0.00%
book has an optional (#IMPLIED) <title>Foundations of Databases</title|
. . s N <author>Abi teboul</author>
price attribute which contains <author>Hul1</author>
<author>Vianu/author>
character data <publisher>Addison Wesley</publisher>
<year>1995</year>
Other attribute types include IDREF (reference to an ID), </;|/g$?§;raphy>

IDREFS (space-separated list of references), enumerated list, etc.

10

DTD explained (cont’d)

<IELEMENT title (#PCDATA)> PCDATA is text that will be parsed
<IELEMENT author (#PCDATA)> (<...> will be treated as a markup tag
<IELEMENT publisher (#PCDATA)> and &1t etc. will be treated as entities);|
<IELEMENT year (#PCDATA)> CDATA is unparsed character data

L> title, author, publisher, and year all
contain parsed character data (#PCDATA)

<IELEMENT section (title, (#PCDATA)?, section*)>
L> Each section stares with a title,

followed by some optional text and then <section><title>Introduction</title>
. In this section we introduce XML and DTD.
zero or more subsections <section><title>XML</title>
YL stands for..
</section>
1> <section><title>DTD</title>
<section><title>Definition</title>
DTD stands for.
</section>
<section<title>Usage</title>
You can use DT to..
</section>
</section>
</section>

“Deterministic” content declaration

% Catch: the following declaration does not work:
= <IELEMENT pub-venue
((name, address, month, year) |
(name, volume, number, year))>
= Because when looking at name, the XML processor
would not know which way to go without looking
further ahead
< Requirement: content declaration must be
“deterministic” (i.e., no look-ahead required)

% Can we rewrite the above declaration into an
equivalent, but deterministic one?

Using DTD _

< DTD can be included in the XML source file
= <?xml version="1.0"?>
<!DOCTYPE bibliography [

>
<bibliography>

</bibliography>
< DTD can be external

<?xml version="1.0"?>

<IDOCTYPE bibliography SYSTEM "../dtds/bib.dtd">
<bibliography>

:/Eibliographp

<?xml version="1.0"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtml1-strict.dtd">

<htm1>

</htm1>

Why use DTD’s?

< Benefits of not using DTD
= Unstructured data is easy to represent
® Overhead of DTD validation is avoided

< Benefits of using DTD
= DTD can serve as a schema for the XML data

* Guards against errors
* Helps with processing
= DTD facilitates information exchange
g

® People can agree to use a common DTD to exchange data
(e.g., XHTML)

XML versus relational data

Relational data XML data
< Schema is always fixed in
advance and difficult to change

< Simple, flat table structures

% Ordering of rows and columns
is unimportant

4 Data exchange is problematic

< “Native” support in all serious
commercial DBMS

Query languages for XML

< XPath
= Path expressions with conditions

“ Building block of other standards (XQuery, XSLT,
XLink, XPointer, etc.)

< XQuery
= XPath + full-fledged SQL-like query language
< XSLT

= XPath + transformation templates

Example DTD and XML

<?xml version="1.0">
<!IDOCTYPE bibliography [
<!ELEMENT bibliography (book+)>
<IELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN CDATA #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<IELEMENT title (#PCDATA)>
<IELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<IELEMENT year (#PCDATA)>
<IELEMENT section (title, (#PCDATA)?, section*)>
1>
<bibliography>
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hul1</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>.</section>..
</book>

</E1'bﬁography>

A tree representation

Foundations Abiteboul

of Databases

Hull Vianu Addison

. _introduce ..
Introduction

XPath

< XPath specifies path expressions that match XML
data by navigating down (and occasionally up and
across) the tree

< Example

" Query: /bibliography/book/author
¢ Like a UNIX path

= Result: all author elements reachable from root via the

path /bibliography/book/author

Basic XPath constructs

/ separator between steps in a path

name matches any child element with this tag name
* matches any child element

@name matches the attribute with this name
@* matches any attribute

// matches any descendent element or the current
element itself

. matches the current element

.. matches the parent element

20

Simple XPath examples

< All book titles
/bibliography/book/title
< All book ISBN numbers
/bibliography/book/@ISBN
< All title elements, anywhere in the document
//title
< All section titles, anywhere in the document
//section/title
% Authors of bibliographical entries (suppose there are
articles, reports, etc. in addition to books)
/bibliography/*/author

Predicates in path expressions

[condition] — matches the current element if condition evaluates
to true on the current element
% Books with price lower than $50
/bibliography/book[@price<50]
= XPath will automatically convert the price string to a numeric
value for comparison
% Books with author “Abiteboul”
/bibliography/book[author="Abiteboul"]
% Books with a publisher child element
/bibliography/book[publisher]
% Prices of books authored by “Abiteboul”
/bibliography/book[author="Abiteboul']/@price

22

More complex predicates

Predicates can have and’s and or’s

% Books with price between $40 and $50
/bibliography/book[40<=@price and @price<=50]

< Books authored by “Abiteboul” or those with price
lower than $50

/bibliography/book[author="Abiteboul" or
@price<50]

Predicates involving node-sets

/bibliography/book[author="Abiteboul ']

% There may be multiple authors, so author in
general returns a node-set (in XPath terminology)

+ The predicate evaluates to true as long as it
evaluates true for at least one node in the node-set,
i.e., at least one author is “Abiteboul”

< Tricky query

/bibliography/book[author="Abiteboul' and
author!="'Abiteboul']

= Will it return any books?

24

XPath operators and functions

Frequently used in conditions:
x+y,x—y,x*y,xdivy, xmody

contains(x, y) true if string x contains string y
count (rode-set) counts the number nodes in 7zode-set

position() returns the “context position” (roughly, the
position of the current node in the node-set containing it)

last() returns the “context size” (roughly, the node-set
containing the current node)

name () returns the tag name of the current element

More XPath examples

% All elements whose tag names contain “section” (e.g.,
“subsection”)
//*[contains(name(), 'section')]

% Title of the first section in each book
/bibliography/book/section[position()=1]/title
= A shorthand: /bibliography/book/section[1]/title

< Title of the last section in each book
/bibliography/book/section[position()=last()]/title

< Books with fewer than 10 sections
/bibliography/book[count (section)<10]

< All elements whose parent’s tag name is not “book”
//*[name() !="book"'] /*

26

A tricky example

 Suppose that price is a child element of book, and
there may be multiple prices per book
< Books with some price in range {20, 50}

= How about:
/bibliography/book
[price >= 20 and price <= 50]

= Correct answer:

N
§

De-referencing IDREF’s

id (identifier) returns the element with the unique
identifier
+ Suppose that books can make references to other
books
<section><title>Introduction</title>
XML is a hot topic these days; see <bookref
ISBN="ISBN-10"/> for more details..
</section>
< Find all references to books written by “Abiteboul”
in the book with “ISBN-10"

/bibliography/book [@ISBN="ISBN-10"']
//bookref[id(@ISBN) /author="'Abiteboul"']

28

General XPath location steps

% Technically, each XPath query consists of a series of
location steps separated by /

< Each location step consists of

= An axis: one of self, attribute, parent, child, ancestor,
ancestor-or-self, descendent, descendent-or-self,
following, following-sibling, preceding, preceding-
sibling, and namespace

= A node test: either a name test (e.g., book, section, *) or a type
test (e.g., text (), node(), comment()), separated from the axis
by ::

= Zero of more predicates (or conditions) enclosed in square brackets

29

Example of verbose syntax

Verbose (axis, node test, predicate):

/child::bibliography
/child::book[attribute::ISBN="ISBN-10"]
/descendent-or-self::node()
/child::title

Abbreviated:

/bibliography/book [@ISBN="ISBN-10']//title
= child is the default axis
= // stands for /descendent-or-self::node()/

