
1

Physical Data Organization

CPS 116

Introduction to Database Systems

2

Announcements (November 3)

Homework #3 due today

Project milestone #2 due in a week

3

Outline

It’s all about disks!
That’s why we always draw databases as

And why the single most important metric in database
processing is the number of disk I/O’s performed

Storing data on a disk
Record layout

Block layout

4

Storage hierarchy

Registers

Cache

Memory

Disk

Tapes

Why a hierarchy?

5

How far away is data?

Location Cycles

Registers 1

On-chip cache 2

On-board cache 10

Memory 100

Disk 106

Tape 109

Location Time

My head 1 min.

This room 2 min.

Duke campus 10 min.

Washington D.C. 1.5 hr.

Pluto 2 yr.

Andromeda 2000 yr.
(Source: AlphaSort paper, 1995)

I/O dominates—design your algorithms to reduce I/O!

6

A typical disk

Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow

2

7

Top view

Track

Track
Track

Sectors

Higher-density sectors on inner tracks
and/or more sectors
on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors

8

Disk access time

Sum of:

Seek time: time for disk heads to move to the
correct cylinder

Rotational delay: time for the desired block to rotate
under the disk head

Transfer time: time to read/write data in the block
(= time for disk to rotate over the block)

9

Random disk access

Seek time + rotational delay + transfer time

Average seek time
Time to skip one half of the cylinders?

Not quite; should be time to skip a third of them (why?)

“Typical” value: 5 ms

Average rotational delay
Time for a half rotation (a function of RPM)

“Typical” value: 4.2 ms (7200 RPM)

10

Sequential disk access

Seek time + rotational delay + transfer time

Seek time
0 (assuming data is on the same track)

Rotational delay
0 (assuming data is in the next block on the track)

Easily an order of magnitude faster than random
disk access!

11

Performance tricks
Disk layout strategy

Keep related things (what are they?) close together: same
sector/block → same track → same cylinder → adjacent cylinder

Double buffering
While processing the current block in memory, prefetch the next
block from disk (overlap I/O with processing)

Disk scheduling algorithm
Example: “elevator” algorithm

Track buffer
Read/write one entire track at a time

Parallel I/O
More disk heads working at the same time

12

Record layout

Record = row in a table

Variable-format records
Rare in DBMS—table schema dictates the format

Relevant for semi-structured data such as XML

Focus on fixed-format records
With fixed-length fields only, or

With possible variable-length fields

3

13

Fixed-length fields

All field lengths and offsets are constant
Computed from schema, stored in the system catalog

Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT);

142
0 4

Bart (padded with space)

24

10 2.3
28 36

Watch out for alignment
May need to pad; reorder columns if that helps

What about NULL?
Add a bitmap at the beginning of the record

14

Variable-length records

Example: CREATE TABLE Student
(SID INT, name VARCHAR(20), age INT, GPA FLOAT,
comment VARCHAR(100));

Approach 1: use field delimiters (‘\0’ okay?)

Approach 2: use an offset array

Put all variable-length fields at the end (why?)

Update is messy if it changes the length of a field

142
0 4

Bart\010 2.3
8 16

Weird kid!\0

142
0 4

Bart10 2.3
8 16

Weird kid!

18 22 32

22 32

15

LOB fields

Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));

Student records get “de-clustered”
Bad because most queries do not involve picture

Decomposition (automatically done by DBMS and
transparent to the user)
Student(SID, name, age, GPA)

StudentPicture(SID, picture)

16

Block layout

How do you organize records in a block?

NSM (N-ary Storage Model)
Most commercial DBMS

PAX (Partition Attributes Across)
Ailamaki et al., VLDB 2001

17

NSM

Store records from the beginning of each block

Use a directory at the end of each block
To locate records and manage free space

Necessary for variable-length records

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3

857 Lisa 8 4.3

Why store data and directory
at two different ends?

Both can grow easily

18

Options

Reorganize after every update/delete to avoid
fragmentation (gaps between records)

Need to rewrite half of the block on average

What if records are fixed-length?
Reorganize after delete

• Only need to move one record

• Need a pointer to the beginning of free space

Do not reorganize after update
• Need a bitmap indicating which slots are in use

4

19

Cache behavior of NSM

Query: SELECT SID FROM Student WHERE GPA > 2.0;

Assumption: cache block size < record size

Lots of cache misses
ID and GPA are not close enough by memory standards

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3

857 Lisa 8 4.3
142 Bart 10

2.3 123 Milhouse

10 3.1 857 Lisa

8 4.3

456 Ralph 8

Cache

2.3

20

PAX

Most queries only access a few columns

Cluster values of the same columns in each block
When a particular column of a row is brought into the cache, the
same column of the next row is brought in together

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)

21

Summary
Storage hierarchy

Why I/O’s dominate the cost of database operations

Disk
Steps in completing a disk access
Sequential versus random accesses

Record layout
Handling variable-length fields
Handling NULL
Handling modifications

Block layout
NSM: the traditional layout
PAX: a layout that tries to improve cache performance

