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Physical Data Organization

CPS 116

Introduction to Database Systems
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Announcements (November 3)

Homework #3 due today

Project milestone #2 due in a week
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Outline

It’s all about disks!
That’s why we always draw databases as 

And why the single most important metric in database 
processing is the number of disk I/O’s performed

Storing data on a disk
Record layout

Block layout
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Storage hierarchy

Registers

Cache

Memory

Disk

Tapes

Why a hierarchy?
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How far away is data?

Location Cycles

Registers 1

On-chip cache 2

On-board cache 10

Memory 100

Disk 106

Tape 109

Location Time

My head 1 min.

This room 2 min.

Duke campus 10 min.

Washington D.C. 1.5 hr.

Pluto 2 yr.

Andromeda 2000 yr.
(Source: AlphaSort paper, 1995)

I/O dominates—design your algorithms to reduce I/O!
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A typical disk

Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow
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Top view

Track

Track
Track

Sectors

Higher-density sectors on inner tracks
and/or more sectors
on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors
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Disk access time

Sum of:

Seek time: time for disk heads to move to the 
correct cylinder

Rotational delay: time for the desired block to rotate 
under the disk head

Transfer time: time to read/write data in the block 
(= time for disk to rotate over the block)
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Random disk access

Seek time + rotational delay + transfer time

Average seek time
Time to skip one half of the cylinders?

Not quite; should be time to skip a third of them (why?)

“Typical” value: 5 ms 

Average rotational delay
Time for a half rotation (a function of RPM)

“Typical” value: 4.2 ms (7200 RPM)
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Sequential disk access

Seek time + rotational delay + transfer time

Seek time
0 (assuming data is on the same track)

Rotational delay
0 (assuming data is in the next block on the track)

Easily an order of magnitude faster than random 
disk access!
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Performance tricks
Disk layout strategy

Keep related things (what are they?) close together: same 
sector/block → same track → same cylinder → adjacent cylinder

Double buffering
While processing the current block in memory, prefetch the next 
block from disk (overlap I/O with processing)

Disk scheduling algorithm
Example: “elevator” algorithm

Track buffer
Read/write one entire track at a time

Parallel I/O
More disk heads working at the same time
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Record layout

Record = row in a table

Variable-format records
Rare in DBMS—table schema dictates the format

Relevant for semi-structured data such as XML

Focus on fixed-format records
With fixed-length fields only, or

With possible variable-length fields
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Fixed-length fields

All field lengths and offsets are constant
Computed from schema, stored in the system catalog

Example: CREATE TABLE Student(SID INT, name 
CHAR(20), age INT, GPA FLOAT);

142
0 4

Bart (padded with space)

24

10 2.3
28 36

Watch out for alignment
May need to pad; reorder columns if that helps

What about NULL?
Add a bitmap at the beginning of the record
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Variable-length records

Example: CREATE TABLE Student
(SID INT, name VARCHAR(20), age INT, GPA FLOAT,
comment VARCHAR(100));

Approach 1: use field delimiters (‘\0’ okay?)

Approach 2: use an offset array

Put all variable-length fields at the end (why?)

Update is messy if it changes the length of a field

142
0 4

Bart\010 2.3
8 16

Weird kid!\0

142
0 4

Bart10 2.3
8 16

Weird kid!

18 22 32

22 32
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LOB fields

Example: CREATE TABLE Student(SID INT, name 
CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));

Student records get “de-clustered”
Bad because most queries do not involve picture

Decomposition (automatically done by DBMS and 
transparent to the user)
Student(SID, name, age, GPA)

StudentPicture(SID, picture)
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Block layout

How do you organize records in a block?

NSM (N-ary Storage Model)
Most commercial DBMS

PAX (Partition Attributes Across)
Ailamaki et al., VLDB 2001
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NSM

Store records from the beginning of each block

Use a directory at the end of each block
To locate records and manage free space

Necessary for variable-length records

142 Bart    10  2.3 123 Milhouse 10 3.1

456 Ralph    8  2.3

857  Lisa     8  4.3

Why store data and directory
at two different ends?

Both can grow easily
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Options

Reorganize after every update/delete to avoid 
fragmentation (gaps between records)

Need to rewrite half of the block on average

What if records are fixed-length?
Reorganize after delete

• Only need to move one record

• Need a pointer to the beginning of free space

Do not reorganize after update
• Need a bitmap indicating which slots are in use
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Cache behavior of NSM

Query: SELECT SID FROM Student WHERE GPA > 2.0;

Assumption: cache block size < record size

Lots of cache misses
ID and GPA are not close enough by memory standards

142 Bart    10  2.3 123 Milhouse  10 3.1

456 Ralph    8  2.3

857  Lisa     8  4.3
142  Bart 10 

2.3 123 Milhouse

10 3.1 857  Lisa

8  4.3          

456 Ralph      8

Cache

2.3 
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PAX

Most queries only access a few columns

Cluster values of the same columns in each block
When a particular column of a row is brought into the cache, the
same column of the next row is brought in together

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)
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Summary
Storage hierarchy

Why I/O’s dominate the cost of database operations

Disk
Steps in completing a disk access
Sequential versus random accesses

Record layout
Handling variable-length fields
Handling NULL
Handling modifications

Block layout
NSM: the traditional layout
PAX: a layout that tries to improve cache performance


