

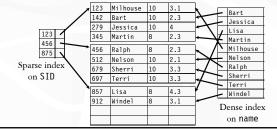
Announcements (November 8)

Homework #3 sample solution available

- Project milestone #2 due this Thursday
- Platform, production dataset, and performance tuning

Basics

\$ Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

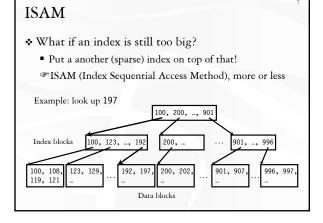

Search

- * Other search criteria, e.g.
 - Range search
 SELECT * FROM R WHERE A > value;
 - Keyword search

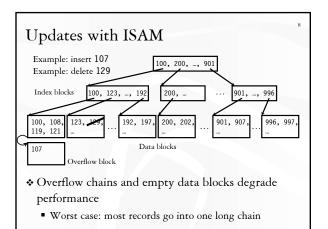
database indexing

Dense and sparse indexes

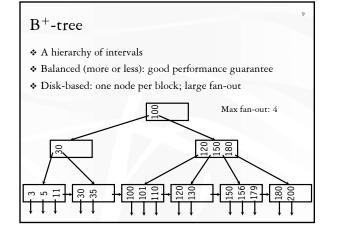
- * Dense: one index entry for each search key value
- * Sparse: one index entry for each block
 - Records must be clustered according to the search key

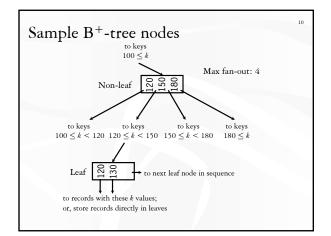

Dense versus sparse indexes

- ✤ Index size
- Sparse index is smaller
- * Requirement on records
 - Records must be clustered for sparse index
- Lookup
 - Sparse index is smaller and may fit in memory
 - Dense index can directly tell if a record exists
- * Update
 - Easier for sparse index

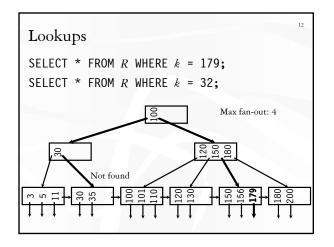

Primary and secondary indexes

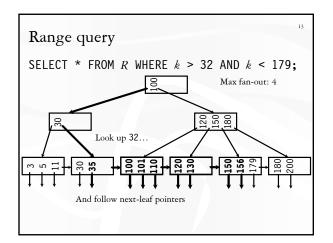
✤ Primary index


- Created for the primary key of a table
- Records are usually clustered according to the primary key
- Can be sparse
- * Secondary index
 - Usually dense
- * SQL
 - PRIMARY KEY declaration automatically creates a primary index, UNIQUE key automatically creates a secondary index
 - Additional secondary index can be created on non-key attribute(s) CREATE INDEX StudentGPAIndex ON Student(GPA);

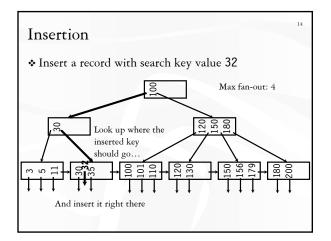


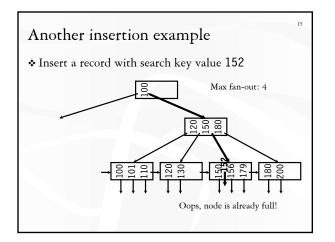


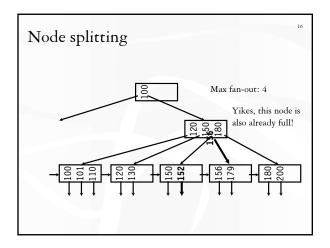


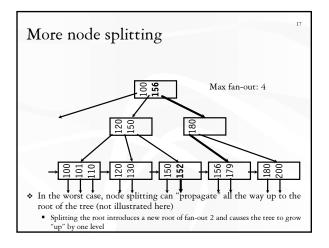


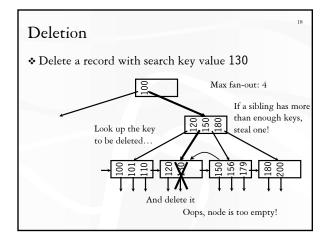
B ⁺ -tree balancing properties				
◆ Height constraint: all leaves at the same lowest level				
✤ Fan-out constraint: all nodes at least half full				
(except root)				
	Max #	Max #	Min #	Min #
1	ointers	keys	active pointers	keys
Non-leaf	f	f-1	$\lceil f/2 \rceil$	$\left\lceil f/2 \right\rceil - 1$
Root	f	f-1	2	1
Leaf	f	f - 1	$\lfloor f/2 \rfloor$	$\lfloor f/2 \rfloor$

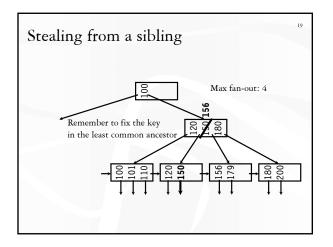


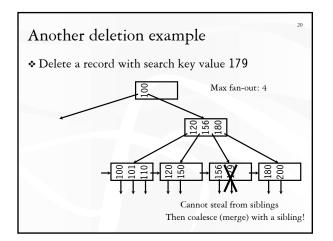


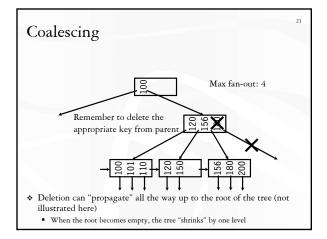












Performance analysis

- How many I/O's are required for each operation?
 - *b*, the height of the tree (more or less)
 - Plus one or two to manipulate actual records
 - Plus O(b) for reorganization (should be very rare if f is large)

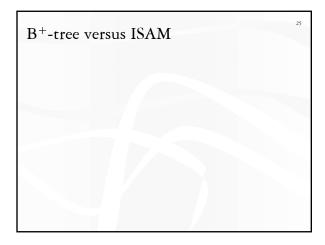
22

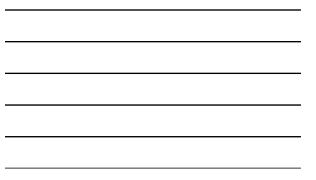
23

24

- Minus one if we cache the root in memory
- How big is b?
 - Roughly $\log_{fan-out} N$, where N is the number of records
 - B⁺-tree properties guarantee that fan-out is least f/2 for all non-root nodes
 - Fan-out is typically large (in hundreds)—many keys and pointers can fit into one block
 - A 4-level B⁺-tree is enough for typical tables

B⁺-tree in practice


- Complex reorganization for deletion often is not implemented (e.g., Oracle, Informix)
 - Leave nodes less than half full and periodically reorganize
- Most commercial DBMS use B⁺-tree instead of hashing-based indexes because B⁺-tree handles range queries


The Halloween Problem

✤ Story from the early days of System R... UPDATE Payroll

SET salary = salary * 1.1 WHERE salary >= 100000;

- There is a B⁺-tree index on Payroll(salary)
- The update never stopped (why?)
- Solutions?

B⁺-tree versus B-tree

- B-tree: why not store records (or record pointers) in non-leaf nodes?
 - These records can be accessed with fewer I/O's
- * Problems?

Beyond ISAM, B-, and B⁺-trees

- * Other tree-based indexs: R-trees and variants, GiST, etc.
- Hashing-based indexes: extensible hashing, linear hashing, etc.
- * Text indexes: inverted-list index, suffix arrays, etc.
- * Other tricks: bitmap index, bit-sliced index, etc.