Indexing

CPS 116

Introduction to Database Systems

Announcements (November 8)

<+ Homework #3 sample solution available
% Project milestone #2 due this Thursday

= Platform, production dataset, and performance tuning

Basics

% Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = walue;
SELECT * FROM R, S WHERE R.A = S.B;

< Other search criteria, e.g.

= Range search
SELECT * FROM R WHERE A > walue;

= Keyword search
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Dense and sparse indexes

% Dense: one index entry for each search key value
< Sparse: one index entry for each block

= Records must be clustered according to the search key
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Dense versus sparse indexes

% Index size
= Sparse index is smaller
< Requirement on records
= Records must be clustered for sparse index
< Lookup
= Sparse index is smaller and may fit in memory
® Dense index can directly tell if a record exists
< Update

®= Easier for sparse index

Primary and secondary indexes

% Primary index
= Created for the primary key of a table
= Records are usually clustered according to the primary key
= Can be sparse
< Secondary index
= Usually dense
< SQL
= PRIMARY KEY declaration automatically creates a primary index,
UNIQUE key automatically creates a secondary index

= Additional secondary index can be created on non-key attribute(s)
CREATE INDEX StudentGPAIndex ON Student(GPA);




ISAM

< What if an index is still too big?
= Put a another (sparse) index on top of that!
“ISAM (Index Sequential Access Method), more or less

Example: look up 197
100, 200, .., 901
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Data blocks

Updates with ISAM

Example: insert 107

100, 200, .., 901
Example: delete 129 ~

Index blocks JBJO, 123, .., 192| Izoo, I |901, 995]
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Data blocks

Overflow block

< Overflow chains and empty data blocks degrade
performance

= Worst case: most records go into one long chain

BT -tree

< A hierarchy of intervals
% Balanced (more or less): good performance guarantee

% Disk-based: one node per block; large fan-out

Max fan-out: 4

Sample B*-tree nodes
to keys
100 Syé
Max fan-out: 4
Non-leaf

to keys to keys to keys to keys
100 <A <120 120<£ <150 150<£ <180 180<#4

o o
Leaf | & s} to next leaf node in sequence

to records with these £ values;
or, store records directly in leaves

B -tree balancing properties

< Height constraint: all leaves at the same lowest level

% Fan-out constraint: all nodes at least half full
(except root)

Max # Max # Min # Min #
pointers _ keys active pointers  keys
Non-leaf  f f-1 [f/2] [fl2]1-1
Root f f-1 2 1
Leaf f f-1 Lf/2] Lf/2]

Lookups

SELECT * FROM R WHERE £
SELECT * FROM R WHERE £

179;
32;

Max fan-out: 4
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Range query

SELECT * FROM R WHERE £ > 32 AND £ < 179;

Max fan-out: 4

And follow next-leaf pointers

Insertion

% Insert a record with search key value 32

Max fan-out: 4

Look up where the
inserted key
should go...
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And insert it right there

Another insertion example

% Insert a record with search key value 152

Max fan-out: 4

Oops, node is already full!

Node splitting

Max fan-out: 4

Yikes, this node is
also already full!
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More node splitting

Max fan-out: 4
—, =

o o o

N O [ce]

— —
o o o (=] (=2}
— NN 0 0 ~
— — — - —

«~—]100
~—]101
«—1156
«—]180
«—1200

% In the worst case, noc}e splitting can “!ﬂopagate al{ the way up to the
root of the tree (not illustrated here)

= Splitting the root introduces a new root of fan-out 2 and causes the tree to grow
“up” by one level

Deletion

% Delete a record with search key value 130

Max fan-out: 4

If a sibling has more
than enough keys,
Look up the l(f:y steal one!

to be deleted...

And delete it
Oops, node is too empty!




Stealing from a sibling

Max fan-out: 4

Remember to fix the key
in the least common ancestor

Another deletion example

% Delete a record with search key value 179

Max fan-out: 4
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Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

Max fan-out: 4

Remember to delete the
appropriate key from parent
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% Deletion can “propagate” all the way up to the root of the tree (not
illustrated here)

= When the root becomes empty, the tree “shrinks” by one level

22

Performance analysis

< How many I/O’s are required for each operation?
= ), the height of the tree (more or less)
= Plus one or two to manipulate actual records
= Plus O(h) for reorganization (should be very rare if / is large)
= Minus one if we cache the root in memory
< How big is 5?
Roughly logg,. ... N, where N is the number of records

B*-tree properties guarantee that fan-out is least // 2 for all non-
root nodes

Fan-out is typically large (in hundreds)—many keys and pointers
can fit into one block

= A 4-level B*-tree is enough for typical tables

B -tree in practice

< Complex reorganization for deletion often is not
implemented (e.g., Oracle, Informix)
® Leave nodes less than half full and periodically reorganize
% Most commercial DBMS use B*-tree instead of
hashing-based indexes because B*-tree handles
range queries

The Halloween Problem

% Story from the early days of System R...

UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;

= There is a B*-tree index on Payroll(salary)
® The update never stopped (why?)
% Solutions?
= Scan index in reverse
= Before update, scan index to create a complete “to-do” list
® During update, maintain a “done” list

= Tag every row with transaction/statement id




B*-tree versus ISAM

% ISAM is more static; B*-tree is more dynamic
< ISAM is more compact (at least initially)

= Fewer levels and I/O’s than B*-tree
< Overtime, ISAM may not be balanced

= Cannot provide guaranteed performance as B*-tree does

B -tree versus B-tree

< B-tree: why not store records (or record pointers) in
non-leaf nodes?

® These records can be accessed with fewer I/O’s
% Problems?

= Storing more data in a node decreases fan-out and
increases »

® Records in leaves require more I/O’s to access

= Vast majority of the records live in leaves!

S

Beyond ISAM, B-, and B*-trees

% Other tree-based indexs: R-trees and variants, GiST,
etc.

< Hashing-based indexes: extensible hashing, linear
hashing, etc.

< Text indexes: inverted-list index, suffix arrays, etc.

< Other tricks: bitmap index, bit-sliced index, etc.




