Query Processing: A Systems View

CPS 116

Introduction to Database Systems

Announcements (November 15)

< Homework #3 has been graded

% Project milestone #2 feedbacks by this weekend

% No class or office hours this Thursday (Nov. 17);
I am out of town

= Will schedule a make-up lecture towards the end of the
semester (as a review session)

A query’s trip through the DBMS

SOL query SELECT title, SID
FROM Enrol1, Course
<Qery> Parser WHERE Enrol1.CID =
SSEW Course.CID;
_SS

<selegt-list> l-<w/nw—%d> Parse tree

/1 <f elig>

7 ,
" <l <ige>

| Tiitte, s1D
Enroll Course Logzmlp lan ol—Enm//.ClD = Course.CID)|
X
. imi N

PROJECT (it SID [ Opdmizer |, #"S
MERGE-JOIN (CID) Physical plan

7 \

(0 X o “

SCAN (Enroll)

Result




Parsing and validation

< Parser: SQL — parse tree
= Good old lex & yacc
= Detect and reject syntax errors
< Validator: parse tree — logical plan
= Detect and reject semantic errors
* Nonexistent tables/views/columns?
* Insufficient access privileges?
* Type mismatches?
— Examples: AVG(name), name + GPA, Student UNION Enroll
= Also
¢ Expand *
* Expand view definitions
= Information required for semantic checking is found in system
catalog (contains all schema information)

Logical plan

% Nodes are logical operators (often relational algebra
operators)

< There are many equivalent logical plans

7|Tzz'tle
ol—Stm&r/t.mmz:“Bart" A Student SID = Enroll SID N Enroll.CID = Course.CID
X
X
PN Course A al e 7|Ttit[e
Student  Enroll n equivalent plan:

D<{Em//.CID = Course.CID
Course

N{udem,sm = Enroll SID
Envoll

?—nmne = “Bart”

Student

Physical (execution) plan

< A complex query may involve multiple tables and
various query processing algorithms
= E.g., table scan, index nested-loop join, sort-merge join,
hash-based duplicate elimination...
% A physical plan for a query tells the DBMS query
processor how to execute the query
= A tree of physical plan operators
® Each operator implements a query processing algorithm

= Each operator accepts a number of input tables/streams
and produces a single output table/stream




Examples of physical plans —

SELECT Course.title
FROM Student, Enroll, Course
WHERE Student.name = 'Bart'

AND Student.SID = Enrol1.SID AND Enroll1.CID = Course.CID;

PROJECT (vitle) PROJECT (vitle)
1
INDEXfNESTEDf{OOPJOIN (CID) MERGE-JOIN (CID)
N
Index on Course(CID)

SORT,(CID) SCAN (Course)
INDEX-NESTED-LOOP-]JOIN (SID) 7

MERGE-JOIN (SID)

Index on Enroll(SID)
« .. SORT (SID
INDEX-SCAN (name = “Bart”) FILTER (rame = “Bart”) L)

SCAN (Enroll)
Index on Student(name)

1
SCAN (Student)
< Many physical plans for a single query

= Equivalent results, but different costs and assumptions!

= DBMS query optimizer picks the “best” possible physical plan

Physical plan execution 8

< How are intermediate results passed from child
operators to parent operators?
= Temporary files
¢ Compute the tree bottom-up

¢ Children write intermediate results to temporary files
® Parents read temporary files

= Jterators

* Do not materialize intermediate results

¢ Children pipeline their results to parents

,
Iterator interface

< Every physical operator maintains its own execution
state and implements the following methods:
= open(): Initialize state and get ready for processing
= getNext (): Return the next tuple in the result (or a null

pointer if there are no more tuples); adjust state to allow
subsequent tuples to be obtained

= close(): Clean up




10

An iterator for table scan

+ State: a block of memory for buffering input R;
a pointer to a tuple within the block

+ open (): allocate a block of memory
< getNext ()

= If no block of R has been read yet, read the first block from the
disk and return the first tuple in the block
* Or the null pointer if R is empty
= If there is no more tuple left in the current block, read the next
block of R from the disk and return the first tuple in the block
* Or the null pointer if there are no more blocks in R

= QOtherwise, return the next tuple in the memory block

% close(): deallocate the block of memory

An iterator for nested-loop join

R: An iterator for the left subtree NESTED-LOOP-JOIN

S: An iterator for the right subtree

R S
+ open() A

R.open(); S.open(); r = R.getNext();

< getNext ()
do {
s = S.getNext();
if (s == null) {
S.close(); S.open(); s = S.getNext(); if (s == null) return null;
r = R.getNext(); if (r == null) return null;
}
} until (r joins with s);
return rs;

< close()

R.close(); S.close();

Is this tuple-based or
block-based nested-loop join?

An iterator for 2-pass merge sort

< open()
= Allocate a number of memory blocks for sorting
= Call open() on child iterator
% getNext ()
= If called for the first time
* Call getNext () on child to fill all blocks, sort the tuples, and output a run
* Repeat uncil getNext () on child recurns null

* Read one block from each run into memory, and initialize pointers to point
to the beginning tuple of each block

® Return the smallest tuple and advance the corresponding pointer;
if a block is exhausted bring in the next block in the same run

< close()
= Call close() on child

= Deallocate sorting memory and delete temporary runs




Blocking vs. non-blocking iterators

% A blocking iterator must call getNext ()
exhaustively (or nearly exhaustively) on its children
before returning its first output tuple

= Examples:

% A non-blocking iterator expects to make only a few
getNext () calls on its children before returning its
first (or next) output tuple

= Examples:

Execution of an iterator tree

% Call root.open()
% Call root.getNext () repeatedly until it returns null
% Call root.close()

@ Requests go down the tree
@ Intermediate result tuples go up the tree

= No intermediate files are needed




