
1

Query Processing: A Systems View

CPS 116

Introduction to Database Systems

2

Announcements (November 15)

Homework #3 has been graded

Project milestone #2 feedbacks by this weekend

No class or office hours this Thursday (Nov. 17);
I am out of town

Will schedule a make-up lecture towards the end of the 
semester (as a review session)

3

A query’s trip through the DBMS

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT title, SID
FROM Enroll, Course
WHERE Enroll.CID =

Course.CID;
Parse tree

<SFW>
<select-list>

<from-list>
<where-cond>

<table> <table>

<Query>

Enroll Course

……

Physical plan

PROJECT (title, SID)

MERGE-JOIN (CID)

SCAN (Enroll)
SCAN (Course)

SORT (CID)

Logical plan
πtitle, SID
σEnroll.CID = Course.CID

Enroll Course
×

4

Parsing and validation
Parser: SQL → parse tree

Good old lex & yacc
Detect and reject syntax errors

Validator: parse tree → logical plan
Detect and reject semantic errors

• Nonexistent tables/views/columns?
• Insufficient access privileges?
• Type mismatches?

– Examples: AVG(name), name + GPA, Student UNION Enroll

Also
• Expand *
• Expand view definitions

Information required for semantic checking is found in system 
catalog (contains all schema information)

5

Logical plan
Nodes are logical operators (often relational algebra 
operators)
There are many equivalent logical plans

πtitle
σStudent.name=“Bart” ∧ Student.SID = Enroll.SID ∧ Enroll.CID = Course.CID
×

Enroll

Course×

Student An equivalent plan:
πtitle

Enroll.CID = Course.CID

Enroll

Course

Student

Student.SID = Enroll.SID

σname = “Bart”

6

Physical (execution) plan

A complex query may involve multiple tables and 
various query processing algorithms

E.g., table scan, index nested-loop join, sort-merge join, 
hash-based duplicate elimination…

A physical plan for a query tells the DBMS query 
processor how to execute the query

A tree of physical plan operators

Each operator implements a query processing algorithm

Each operator accepts a number of input tables/streams 
and produces a single output table/stream



2

7

Examples of physical plans

Many physical plans for a single query
Equivalent results, but different costs and assumptions!

DBMS query optimizer picks the “best” possible physical plan

PROJECT (title)

INDEX-NESTED-LOOP-JOIN (CID)

Index on Enroll(SID)

Index on Course(CID)

Index on Student(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (SID)

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)

MERGE-JOIN (SID)

SCAN (Enroll)

SORT (SID)

SCAN (Student)

FILTER (name = “Bart”)

SELECT Course.title
FROM Student, Enroll, Course
WHERE Student.name = ‘Bart’
AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID;

8

Physical plan execution

How are intermediate results passed from child 
operators to parent operators?

Temporary files
• Compute the tree bottom-up

• Children write intermediate results to temporary files

• Parents read temporary files

Iterators
• Do not materialize intermediate results

• Children pipeline their results to parents

9

Iterator interface

Every physical operator maintains its own execution 
state and implements the following methods:

open(): Initialize state and get ready for processing

getNext(): Return the next tuple in the result (or a null 
pointer if there are no more tuples); adjust state to allow 
subsequent tuples to be obtained

close(): Clean up

10

An iterator for table scan

State: a block of memory for buffering input R; 
a pointer to a tuple within the block

open(): allocate a block of memory

getNext()
If no block of R has been read yet, read the first block from the 
disk and return the first tuple in the block

• Or the null pointer if R is empty

If there is no more tuple left in the current block, read the next 
block of R from the disk and return the first tuple in the block

• Or the null pointer if there are no more blocks in R

Otherwise, return the next tuple in the memory block

close(): deallocate the block of memory

11

An iterator for nested-loop join

R: An iterator for the left subtree

S: An iterator for the right subtree

open()
R.open(); S.open(); r = R.getNext();

getNext()
do {

s = S.getNext();
if (s == null) {
S.close(); S.open(); s = S.getNext(); if (s == null) return null;
r = R.getNext(); if (r == null) return null;

}
} until (r joins with s);
return rs;

close()
R.close(); S.close();

NESTED-LOOP-JOIN

R S

Is this tuple-based or 
block-based nested-loop join?

12

An iterator for 2-pass merge sort
open()

Allocate a number of memory blocks for sorting
Call open() on child iterator

getNext()
If called for the first time

• Call getNext() on child to fill all blocks, sort the tuples, and output a run
• Repeat until getNext() on child returns null
• Read one block from each run into memory, and initialize pointers to point 

to the beginning tuple of each block

Return the smallest tuple and advance the corresponding pointer;
if a block is exhausted bring in the next block in the same run

close()
Call close() on child
Deallocate sorting memory and delete temporary runs



3

13

Blocking vs. non-blocking iterators

A blocking iterator must call getNext()
exhaustively (or nearly exhaustively) on its children 
before returning its first output tuple

Examples: sort, aggregation

A non-blocking iterator expects to make only a few 
getNext() calls on its children before returning its 
first (or next) output tuple

Examples: filter, merge join with sorted inputs

14

Execution of an iterator tree

Call root.open()
Call root.getNext() repeatedly until it returns null

Call root.close()

Requests go down the tree

Intermediate result tuples go up the tree

No intermediate files are needed
But maybe useful if an iterator is opened many times

• Example: complex inner iterator tree in a nested-loop join; “cache” its result 
in an intermediate file


