
1

Query Optimization

CPS 116

Introduction to Database Systems

2

Announcements (November 22)

Thanksgiving break this Thursday; no class

Homework #4 (last one and short) will be assigned
after Thanksgiving break

Project milestone #2 comments have been sent out

3

Query optimization

One logical plan → “best” physical plan

Questions
How to enumerate possible plans

How to estimate costs

How to pick the “best” one

Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

1 second 1 hour1 minute

Any of these will do

4

Plan enumeration in relational algebra

Apply relational algebra equivalences

Join reordering: × and are associative and
commutative (except column ordering, but that is
unimportant)

R S

T

S R

T

R T

S

…= = =

5

More relational algebra equivalences
Convert σp-× to/from p: σp(R × S) = R p S
Merge/split σ’s: σp1(σp2 R) = σp1 ∧ p2 R
Merge/split π’s: πL1(πL2 R) = πL1 R, where L1 ⊆ L2
Push down/pull up σ:
σp ∧ pr ∧ ps (R p’ S) = (σpr R) p ∧ p’ (σps S), where

pr is a predicate involving only R columns
ps is a predicate involving only S columns
p and p’ are predicates involving both R and S columns

Push down π: πL (σp R) = πL (σp (πL L’ R)), where
L’ is the set of columns referenced by p that are not in L

Many more (seemingly trivial) equivalences…
Can be systematically used to transform a plan to new ones

6

Relational query rewrite example
πtitle
σStudent.name=“Bart” ∧ Student.SID = Enroll.SID ∧ Enroll.CID = Course.CID
×

Enroll

Course×

Student πtitle
σEnroll.CID = Course.CID
×

Enroll

Course

×

Student

σStudent.SID = Enroll.SID

σStudent.name = “Bart”

Push down σ
πtitle

Enroll.CID = Course.CID

Enroll

Course

Student

Student.SID = Enroll.SID

σname = “Bart”

Convert σp-× to p

2

7

Heuristics-based query optimization

Start with a logical plan

Push selections/projections down as much as possible
Why? Reduce the size of intermediate results

Why not? May be expensive; maybe joins filter better

Join smaller relations first, and avoid cross product
Why? Reduce the size of intermediate results

Why not? Size depends on join selectivity too

Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

8

SQL query rewrite

More complicated—subqueries and views divide a
query into nested “blocks”

Processing each block separately forces particular join
methods and join order

Even if the plan is optimal for each block, it may not be
optimal for the entire query

Unnest query: convert subqueries/views to joins

We can just deal with select-project-join queries
Where the clean rules of relational algebra apply

9

SQL query rewrite example
SELECT name
FROM Student
WHERE SID = ANY (SELECT SID FROM Enroll);
SELECT name
FROM Student, Enroll
WHERE Student.SID = Enroll.SID;

Wrong—consider two Bart’s, each taking two classes

SELECT name
FROM (SELECT DISTINCT Student.SID, name

FROM Student, Enroll
WHERE Student.SID = Enroll.SID);

Right—assuming Student.SID is a key

10

Dealing with correlated subqueries
SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);
SELECT CID
FROM Course, (SELECT CID, COUNT(*) AS cnt

FROM Enroll GROUP BY CID) t
WHERE t.CID = Course.CID AND min_enroll > t.cnt
AND title LIKE ’CPS%’;

New subquery is inefficient (computes enrollment for all courses)

Suppose a CPS class is empty?

11

“Magic” decorrelation
SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);
CREATE VIEW Supp_Course AS
SELECT * FROM Course WHERE title LIKE ’CPS%’;

CREATE VIEW Magic AS
SELECT DISTINCT CID FROM Supp_Course;

CREATE VIEW DS AS
(SELECT Enroll.CID, COUNT(*) AS cnt
FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
GROUP BY Enroll.CID) UNION

(SELECT Magic.CID, 0 AS cnt FROM Magic
WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

SELECT Supp_Course.CID FROM Supp_Course, DS
WHERE Supp_Course.CID = DS.CID
AND min_enroll > DS.cnt;

Process the outer query
without the subquery

Collect bindings

Evaluate the subquery
with bindings

Finally, refine
the outer query

12

Heuristics- vs. cost-based optimization

Heuristics-based optimization
Apply heuristics to rewrite plans into cheaper ones

Cost-based optimization
Rewrite logical plan to combine “blocks” as much as
possible

Optimize query block by block
• Enumerate logical plans (already covered)

• Estimate the cost of plans

• Pick a plan with acceptable cost

Focus: select-project-join blocks

3

13

Cost estimation

We have: cost estimation for each operator
Example: SORT(CID) takes 2 × B(input)

• But what is B(input)?

We need: size of intermediate results

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)

MERGE-JOIN (SID)

SCAN (Enroll)

SORT (SID)

SCAN (Student)

FILTER (name = “Bart”)

Physical plan example:

Input to SORT(CID):

14

Selections with equality predicates

Q: σA = v R

Suppose the following information is available
Size of R: |R|

Number of distinct A values in R: |πA R|

Assumptions
Values of A are uniformly distributed in R
Values of v in Q are uniformly distributed over all R.A
values

|Q| ≈ |R| ⁄ |πA R|
Selectivity factor of (A = v) is 1 ⁄ |πA R|

15

Conjunctive predicates

Q: σA = u and B = v R

Additional assumptions
(A = u) and (B = v) are independent

• Counterexample: major and advisor

No “over”-selection
• Counterexample: A is the key

|Q| ≈ |R| ⁄ (|πA R| · |πB R|)
Reduce total size by all selectivity factors

16

Negated and disjunctive predicates

Q: σA ≠ v R
|Q| ≈ |R| · (1 – 1 ⁄ |πA R|)

• Selectivity factor of ¬ p is (1 – selectivity factor of p)

Q: σA = u or B = v R
|Q| ≈ |R| · (1 ⁄ |πA R| + 1 ⁄ |πB R|)?

• No! Tuples satisfying (A = u) and (B = v) are counted twice

|Q| ≈ |R| · (1 – (1 – 1 ⁄ |πA R|) · (1 – 1 ⁄ |πB R|))
• Intuition: (A = u) or (B = v) is equivalent to
¬ (¬ (A = u) AND ¬ (B = v))

17

Range predicates

Q: σA > v R
Not enough information!

Just pick, say, |Q| ≈ |R| · 1 ⁄ 3
With more information

Largest R.A value: high(R.A)
Smallest R.A value: low(R.A)
|Q| ≈ |R| · (high(R.A) – v) ⁄ (high(R.A) – low(R.A))
In practice: sometimes the second highest and lowest are
used instead

• The highest and the lowest are often used by inexperienced
database designer to represent invalid values!

18

Two-way equi-join

Q: R(A, B) S(A, C)
Assumption: containment of value sets

Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation
That is, if |πA R| · |πA S| then πA R ⊆ πA S
Certainly not true in general
But holds in the common case of foreign key joins

|Q| ≈ |R| · |S| ⁄ max(|πA R|, |πA S|)
Selectivity factor of R.A = S.A is
1 ⁄ max(|πA R|, |πA S|)

4

19

Multiway equi-join

Q: R(A, B) S(B, C) T(C, D)

What is the number of distinct C values in the join
of R and S?

Assumption: preservation of value sets
A non-join attribute does not lose values from its set of
possible values

That is, if A is in R but not S, then πA (R S) = πA R

Certainly not true in general

But holds in the common case of foreign key joins (for
value sets from the referencing table)

20

Multiway equi-join (cont’d)

Q: R(A, B) S(B, C) T(C, D)

Start with the product of relation sizes
|R| · |S| · |T|

Reduce the total size by the selectivity factor of each
join predicate

R.B = S.B: 1 ⁄ max(|πB R|, |πB S|)

S.C = T.C: 1 ⁄ max(|πC S|, |πC T|)

|Q| ≈ (|R| · |S| · |T|) ⁄
(max(|πB R|, |πB S|) · max(|πC S|, |πC T|))

21

Cost estimation: summary

Using similar ideas, we can estimate the size of projection,
duplicate elimination, union, difference, aggregation (with
grouping)

Lots of assumptions and very rough estimation
Accurate estimate is not needed

Maybe okay if we overestimate or underestimate consistently

May lead to very nasty optimizer “hints”
SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;

Not covered: better estimation using histograms

22

Search for the best plan

Huge search space

“Bushy” plan example:

Just considering different join orders, there are
(2n – 2)! / (n – 1) bushy plans for R1 L Rn

30240 for n = 6

And there are more if we consider:
Multiway joins

Different join methods

Placement of selection and projection operators

R2 R1 R3

R4 R5

23

Left-deep plans

Heuristic: consider only “left-deep” plans, in which only the
left child can be a join

Tend to be better than plans of other shapes, because many join
algorithms scan inner (right) relation multiple times—you will not
want it to be a complex subtree

How many left-deep plans are there for R1 L Rn?
Significantly fewer, but still lots— n! (720 for n = 6)

R2 R1

R3

R4

R5

24

A greedy algorithm
S1, …, Sn

Say selections have been pushed down; i.e., Si = σp Ri

Start with the pair Si, Sj with the smallest estimated size for
Si Sj

Repeat until no relation is left:
Pick Sk from the remaining relations such that the join of Sk
and the current result yields an intermediate result of the
smallest size

Current subplan

…, Sk, Sl, Sm, …
Remaining

relations
to be joined

Pick most efficient join method

Sk

Minimize expected size

5

25

A dynamic programming approach
Generate optimal plans bottom-up

Pass 1: Find the best single-table plans (for each table)
Pass 2: Find the best two-table plans (for each pair of tables) by
combining best single-table plans
…
Pass k: Find the best k-table plans (for each combination of k
tables) by combining two smaller best plans found in previous
passes
…

Rationale: Any subplan of an optimal plan must also be
optimal (otherwise, just replace the subplan to get a better
overall plan)
Well, not quite…

26

The need for “interesting order”

Example: R(A, B) S(A, C) T(A, D)

Best plan for R S: hash join (beats sort-merge join)

Best overall plan: sort-merge join R and S, and then sort-
merge join with T

Subplan of the optimal plan is not optimal!

Why?
The result of the sort-merge join of R and S is sorted on A

This is an interesting order that can be exploited by later
processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY,
etc.)!

27

Dealing with interesting orders

When picking the best plan
Comparing their costs is not enough

• Plans are not totally ordered by cost anymore

Comparing interesting orders is also needed
• Plans are now partially ordered

• Plan X is better than plan Y if
– Cost of X is lower than Y
– Interesting orders produced by X subsume those produced by Y

Need to keep a set of optimal plans for joining every
combination of k tables

At most one for each interesting order

28

Summary

Relational algebra equivalence

SQL rewrite tricks

Heuristics-based optimization

Cost-based optimization
Need statistics to estimate sizes of intermediate results

Greedy approach

Dynamic programming approach

