Transaction Processing

CPS 116
Introduction to Database Systems

Announcements (December 1)

< Homework #4 due next Tuesday (Dec. 6)

% Project demo period will start next Tuesday

® Watch for an email tomorrow about scheduling

% Final exam on December 13

Review

<« ACID

= Atomicity: TXs are either completely done or not done at all

= Consistency: TX’s should leave the database in a consistent state

= Isolation: TX’s must behave as if they are executed in isolation

® Durability: Effects of committed TX’s are resilient against failures
< SQL transactions

-- Begins implicitly

SELECT .3

UPDATE ...;

ROLLBACK | COMMIT;

Concurrency control

% Goal: ensure the “I” (isolation) in ACID

T,: T,
read(A); read(A);
write(A); write(A);
read(B); read(C);
write(B); write(C);

commit; commit;

Good versus bad schedules

T, |7, T, | T, T, | T,
r(A) r(A) r(A)
w(A) r(A) w(A)

t(B) w(A) r(A4)
w(B) w(A) w(A)
1(A4) t(B) t(B)

w(A) 1(C) 1(C)
t(C) w(B) w(B)
w(C) w(C) w(C)

Serial schedule

< Execute transactions in order, with no interleaving
of operations
* T.1(A), Ty w(A), T,.t(B), T, w(B), T,.c(A), T,.-w(A),
T,.6(C), T, w(C)
* T,.5(A), Tow(A), Tr.(C), T, w(C), T,.r(A), Ty wiA),
T,.¢(B), T,.w(B)
Isolation achieved by definition!

< Problem: no concurrency at all

% Question: how to reorder operations to allow more
concurrency

Conflicting operations

< Two operations on the same data item conflict if at
least one of the operations is a write
" 1(X) and w(X) conflict
® w(X) and r(X) conflict
" w(X) and w(X) conflict
" r(X) and r(X) do not
= r/w(X) and r/w(Y) do not
% Order of conflicting operations matters

= E.g., if T|.t(A) precedes T,.w(A), then conceptually, T,
should precede T,

Precedence graph

% A node for each transaction

< A directed edge from T to T; if an operation of T,
precedes and conflicts with an operation of T in the

schedule

@ @
r(A) (A)
w(A) @ w(4) @
r(A) w(A)
w(A) w(Ad)
«(B) «(B)
(C) ()
w(B) w(B)
w(C) w(C)

Conflict-serializable schedule

% A schedule is conflict-serializable iff its precedence
graph has no cycles

% A conflict-serializable schedule is equivalent to some
serial schedule (and therefore is “good”)
= In that serial schedule, transactions are executed in the
topological order of the precedence graph

® You can get to that serial schedule by repeatedly
swapping adjacent, non-conflicting operations from
different transactions

Locking

< Rules
= Jf a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

= If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

= Allow one exclusive lock, or multiple shared locks

Mode of the lock requested

s | x
Mode of lock(s) S | Yes | No | Grant the lock?
currently held X | No [No

by other transactions ~ Compatibility matrix

11
Basic locking is not enough
T, T,
lock-X(A)
r(A)
w(A)
unlock(A)
lock-X(A)
Possible schedule r(A4)
under locking w(A)
unlock(A)
lock-X(B)
r(B)
VB
lock-X(B)
(B)
B
unloZY(((B;

Two-phase locking (2PL) _

< All lock requests precede all unlock requests

= Phase 1: obtain locks, phase 2: release locks

Tl Tl T:
lock-X0) | 2PL guarantees a

r(A4) conflict-serializable r(A)

w(d) schedule w(A)
lock-X(B) «(A)
unlock(A) lock-X(A) w(Ad)

r(A) (B)
w(A) w(B)
lock-X(B) t(B)
«(B) w(B)
w(B)

«(B) Cannot obtain the lock on B

w(B) until 7' unlocks

unlock(B) «”

Problem of 2PL

| < T, has read uncommitted
) data written by T,
w(A) N
) < If T aborts, then T', must
wd) abort as well
r(B)
w(B) % Cascading aborts possible if
(B) .
wB) other transactions have read
Akert data written by T,

< Even worse, what if T, commits before T'?

= Schedule is not recoverable if the system crashes right
after T, commits

Strict 2PL

< Only release locks at commit/abort time

= A writer will block all other readers until the writer
commits or aborts

@ Used in most commercial DBMS (except Oracle)

Recovery

% Goal: ensure “A” (atomicity) and “D” (durability) in ACID
< Execution model: to read/write X
= The disk block containing X must be first brought into memory
= X is read/written in memory

® The memory block containing X, if modified, must be written
back (flushed) to disk eventually

Memory
CPU

Failures

+ System crashes in the middle of a transaction T
partial effects of T were written to disk
= How do we undo T (atomicity)?
% System crashes right after a transaction 7' commits;
not all effects of T were written to disk

= How do we complete 7' (durability)?

Naive approach

% Force: When a transaction commits, all writes of this
transaction must be reflected on disk

® Without force, if system crashes right after T' commits, effects of T
will be lost

Problem:
< No steal: Writes of a transaction can only be flushed to disk
at commit time

= With steal, if system crashes before 7' commits but after some
writes of T have been flushed to disk, there is no way to undo
these writes

Problem:

Logging

< Log
= Sequence of log records, recording all changes made to
the database

= Written to stable storage (e.g., disk) during normal
operation

= Used in recovery
< Hey, one change turns into two—bad for
performance?
= But writes are sequential (append to the end of log)

= Can use dedicated disk(s) to improve performance

Undo/redo logging rules

< Record values before and after each modification:
(T., X, old_valne_of X, new value of X)

% A transaction T; is committed when its commit log record
(T, commit) is written to disk

< Write-ahead logging (WAL): Before X is modified on disk,

the log record pertaining to X must be flushed
= Without WAL, system might crash after X is modified on disk
but before its log record is written to disk—no way to undo

< No force: A transaction can commit even if its modified
memory blocks have not be written to disk (since redo
information is logged)

% Steal: Modified memory blocks can be flushed to disk
anytime (since undo information is logged)

20

Undo/redo logging example

Tl (balance transfer of $100 from A to B)

read(A, @); 2 = a — 100; Memory
write(A, a);

read(B, b); b = b + 100; A =900700
write(B, b); B = 400500
commit;

<T,, start>

Steal: can flush <T,, A, 800,700>

before commit

<T,, B, 400,500>
<T,, commit>
No force: can flush L

after commit

No restriction on when memory blocks can/should be flushed

Checkpointing

% Naive approach:
= Stop accepting new transactions (lame!)
= Finish all active transactions
= Take a database dump
= Now safe to truncate the log
% Fuzzy checkpointing
= Determine §, the set of currently active transactions, and log
(begin-checkpoint S)
® Flush all modified memory blocks at your leisure
* Log (end-checkpoint begin-checkpoint_location)

= Between begin and end, continue processing old and new
transactions

22

Recovery: analysis and redo phase

% Need to determine U, the set of active transactions at time
of crash
% Scan log backward to find the last end-checkpoint record
and follow the pointer to find the corresponding
(start-checkpoint §)
+ Initially, let U be §
% Scan forward from that start-checkpoint to end of the log
® For a log record (7, start), add T to U
® For a log record (T, commit | abort), remove T from U
® For a log record { T, X, old, new), issue write(X, new)

Basically repeats history!

Recovery: undo phase

% Scan log backward
® Undo the effects of transactions in U
® That is, for each log record { T, X, old, new) where T is

in U, issue write(X, o/d), and log this operation too (part
of the repeating-history paradigm)

® Log (T, abort) when all effects of T have been undone
= An optimization
= Each log record stores a pointer to the previous log

record for the same transaction; follow the pointer chain
during undo

Summary

< Concurrency control
= Serial schedule: no interleaving

= Conflict-serializable schedule: no cycles in the precedence
graph; equivalent to a serial schedule

= 2PL: guarantees a conflict-serializable schedule
= Strict 2PL: also guarantees recoverability
< Recovery: undo/redo logging with fuzzy
checkpointing
= Normal operation: write-ahead logging, no force, steal

= Recovery: first redo (forward), and then undo (backword)

