
1

Transaction Processing

CPS 116
Introduction to Database Systems

2

Announcements (December 1)

Homework #4 due next Tuesday (Dec. 6)

Project demo period will start next Tuesday
Watch for an email tomorrow about scheduling

Final exam on December 13

3

Review

ACID
Atomicity: TX’s are either completely done or not done at all

Consistency: TX’s should leave the database in a consistent state

Isolation: TX’s must behave as if they are executed in isolation

Durability: Effects of committed TX’s are resilient against failures

SQL transactions
-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;

4

Concurrency control

Goal: ensure the “I” (isolation) in ACID

A B C

T1:
read(A);
write(A);
read(B);
write(B);
commit;

T2:
read(A);
write(A);
read(C);
write(C);
commit;

5

Good versus bad schedules

T1 T2

r(A)
w(A)
r(B)
w(B)

r(A)
w(A)
r(C)
w(C)

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1 T2

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

Good! Good! (But why?)Bad!

Read 400
Read 400

Write
400 – 100 Write

400 – 50

6

Serial schedule

Execute transactions in order, with no interleaving
of operations

T1.r(A), T1.w(A), T1.r(B), T1.w(B), T2.r(A), T2.w(A),
T2.r(C), T2.w(C)

T2.r(A), T2.w(A), T2.r(C), T2.w(C), T1.r(A), T1.w(A),
T1.r(B), T1.w(B)

Isolation achieved by definition!

Problem: no concurrency at all

Question: how to reorder operations to allow more
concurrency

2

7

Conflicting operations

Two operations on the same data item conflict if at
least one of the operations is a write

r(X) and w(X) conflict

w(X) and r(X) conflict

w(X) and w(X) conflict

r(X) and r(X) do not

r/w(X) and r/w(Y) do not

Order of conflicting operations matters
E.g., if T1.r(A) precedes T2.w(A), then conceptually, T1
should precede T2

8

Precedence graph

A node for each transaction

A directed edge from Ti to Tj if an operation of Ti

precedes and conflicts with an operation of Tj in the
schedule

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1 T2

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1

T2

Good:
no cycle

T1

T2

Bad:
cycle

9

Conflict-serializable schedule

A schedule is conflict-serializable iff its precedence
graph has no cycles

A conflict-serializable schedule is equivalent to some
serial schedule (and therefore is “good”)

In that serial schedule, transactions are executed in the
topological order of the precedence graph

You can get to that serial schedule by repeatedly
swapping adjacent, non-conflicting operations from
different transactions

10

Locking

Rules
If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

Allow one exclusive lock, or multiple shared locks

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?
S X

S Yes No
X No No

Compatibility matrix

11

Basic locking is not enough
T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

unlock(A)

unlock(B)
lock-X(B)

Possible schedule
under locking

But still not
conflict-serializable!

T1

T2

Read 100

Write 100+1

Read 101

Write 101*2

Read 100

Write 100*2

Read 200

Write 200+1

Add 1 to both A and B
(preserve A=B)

Multiply both A and B by 2
(preserves A=B)

A ≠ B!

12

Two-phase locking (2PL)

All lock requests precede all unlock requests
Phase 1: obtain locks, phase 2: release locks

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

lock-X(B)

Cannot obtain the lock on B
until T1 unlocks

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

2PL guarantees a
conflict-serializable

schedule

3

13

Problem of 2PL

T2 has read uncommitted
data written by T1

If T1 aborts, then T2 must
abort as well

Cascading aborts possible if
other transactions have read
data written by T2

Even worse, what if T2 commits before T1?
Schedule is not recoverable if the system crashes right
after T2 commits

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

Abort!

14

Strict 2PL

Only release locks at commit/abort time
A writer will block all other readers until the writer
commits or aborts

Used in most commercial DBMS (except Oracle)

15

Recovery

Goal: ensure “A” (atomicity) and “D” (durability) in ACID

Execution model: to read/write X
The disk block containing X must be first brought into memory

X is read/written in memory

The memory block containing X, if modified, must be written
back (flushed) to disk eventually

CPU
Memory

Disk

X
Y…

X
Y…

16

Failures

System crashes in the middle of a transaction T;
partial effects of T were written to disk

How do we undo T (atomicity)?

System crashes right after a transaction T commits;
not all effects of T were written to disk

How do we complete T (durability)?

17

Naïve approach

Force: When a transaction commits, all writes of this
transaction must be reflected on disk

Without force, if system crashes right after T commits, effects of T
will be lost

Problem: Lots of random writes hurt performance

No steal: Writes of a transaction can only be flushed to disk
at commit time

With steal, if system crashes before T commits but after some
writes of T have been flushed to disk, there is no way to undo
these writes

Problem: Holding on to all dirty blocks requires lots of memory

18

Logging

Log
Sequence of log records, recording all changes made to
the database

Written to stable storage (e.g., disk) during normal
operation

Used in recovery

Hey, one change turns into two—bad for
performance?

But writes are sequential (append to the end of log)

Can use dedicated disk(s) to improve performance

4

19

Undo/redo logging rules
Record values before and after each modification:
h Ti, X, old_value_of_X, new_value_of_X i
A transaction Ti is committed when its commit log record
h Ti, commit i is written to disk
Write-ahead logging (WAL): Before X is modified on disk,
the log record pertaining to X must be flushed

Without WAL, system might crash after X is modified on disk
but before its log record is written to disk—no way to undo

No force: A transaction can commit even if its modified
memory blocks have not be written to disk (since redo
information is logged)
Steal: Modified memory blocks can be flushed to disk
anytime (since undo information is logged)

20

Undo/redo logging example

read(A, a); a = a – 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);

A = 800
B = 400

700
500

<T1, start>
<T1, A, 800, 700>
<T1, B, 400, 500>
<T1, commit>

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

commit;

500

No force: can flush
after commit

No restriction on when memory blocks can/should be flushed

21

Checkpointing

Naïve approach:
Stop accepting new transactions (lame!)

Finish all active transactions

Take a database dump

Now safe to truncate the log

Fuzzy checkpointing
Determine S, the set of currently active transactions, and log
h begin-checkpoint S i

Flush all modified memory blocks at your leisure

Log h end-checkpoint begin-checkpoint_location i

Between begin and end, continue processing old and new
transactions

22

Recovery: analysis and redo phase

Need to determine U, the set of active transactions at time
of crash

Scan log backward to find the last end-checkpoint record
and follow the pointer to find the corresponding
h start-checkpoint S i

Initially, let U be S

Scan forward from that start-checkpoint to end of the log
For a log record h T, start i, add T to U

For a log record h T, commit | abort i, remove T from U

For a log record h T, X, old, new i, issue write(X, new)

Basically repeats history!

23

Recovery: undo phase

Scan log backward
Undo the effects of transactions in U
That is, for each log record h T, X, old, new i where T is
in U, issue write(X, old), and log this operation too (part
of the repeating-history paradigm)

Log h T, abort i when all effects of T have been undone

An optimization
Each log record stores a pointer to the previous log
record for the same transaction; follow the pointer chain
during undo

24

Summary

Concurrency control
Serial schedule: no interleaving

Conflict-serializable schedule: no cycles in the precedence
graph; equivalent to a serial schedule

2PL: guarantees a conflict-serializable schedule

Strict 2PL: also guarantees recoverability

Recovery: undo/redo logging with fuzzy
checkpointing

Normal operation: write-ahead logging, no force, steal

Recovery: first redo (forward), and then undo (backword)

