Data Warehousing and Data Mining CPS 116 Introduction to Database Systems

Announcements (December 8)

- Homework #4 will be graded by this weekend
 Sample solution available now
- Remember your project demo slot!
 Final exam on Tuesday, Dec. 13, 7-10pm
 - Again, open book, open notes
 - Focus on the second half of the course
 - Sample final and solution available now

Data integration

- Data resides in many distributed, heterogeneous OLTP (On-Line Transaction Processing) sources
 - Sales, inventory, customer, ...
 - NC branch, NY branch, CA branch, ...
- Need to support OLAP (On-Line Analytical Processing) over an integrated view of the data
- Possible approaches to integration
 - Eager: integrate in advance and store the integrated data at a central repository called the data warehouse
 - Lazy: integrate on demand; process queries over distributed sources—mediated or federated systems

OLTP versus OLAP

OLTP

- * Mostly updates
- * Short, simple transactions
- * Clerical users
- ✤ Goal: ACID, transaction throughput
- * Long, complex queries * Analysts, decision makers
- ✤ Goal: fast queries

OLAP

* Mostly reads

Implications on database design and optimization?

OLAP databases do not care much about redundancy

Eager versus lazy integration

Eager (warehousing)

- In advance: before queries
- Copy data from sources
- ☞ Answer could be stale
- ☞ Need to maintain consistency
- ☞ Query processing is local to the warehouse
 - Faster
 - Can operate when sources are unavailable

- * Leave data at sources
- ☞ Answer is more up-to-date
- ☞ No need to maintain consistency
- ☞ Sources participate in
 - Slower
 - Interferes with local processing

Maintaining a data warehouse

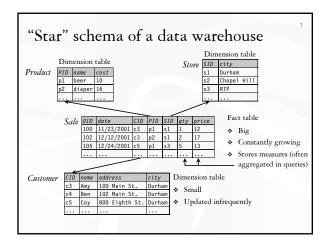
✤ The "ETL" process

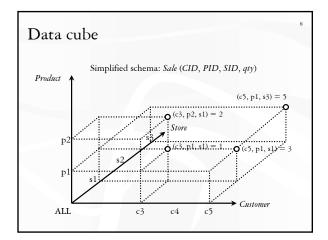
- Extraction: extract relevant data and/or changes from sources
- Transformation: transform data to match the warehouse schema
- Loading: integrate data/changes into the warehouse
- Approaches
 - Recomputation
 - · Easy to implement; just take periodic dumps of the sources, say, every night
 - What if there is no "night," e.g., a global organization?
 - What if recomputation takes more than a day?
 - Incremental maintenance
 - · Compute and apply only incremental changes; fast if changes are small
 - · Not easy to do for complicated transformations
 - · Need to detect incremental changes at the sources

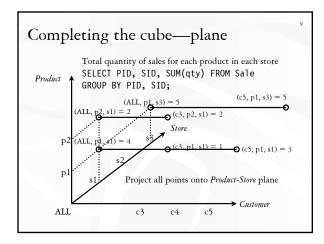
Lazy

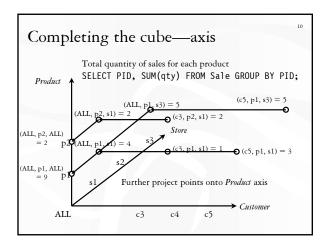
- * On demand: at query time

- query processing



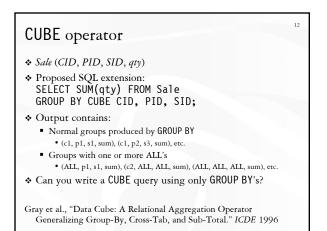






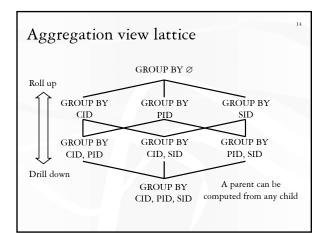


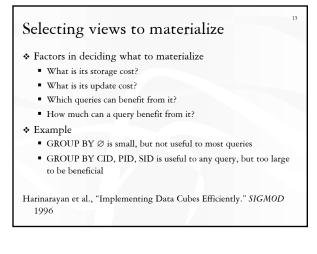




Automatic summary tables

- Computing GROUP BY and CUBE aggregates is expensive
- OLAP queries perform these operations over and over again
- Idea: precompute and store the aggregates as automatic summary tables (a DB2 term)
 - Maintained automatically as base data changes
 - Same as materialized views





Data mining

- \bullet Data \rightarrow knowledge
- * DBMS meets AI and statistics
- Clustering, prediction (classification and regression), association analysis, outlier analysis, evolution analysis, etc.
 - Usually complex statistical "queries" that are difficult to answer → often specialized algorithms outside DBMS
- We will focus on frequent itemset mining

Mining frequent itemsets

- Given: a large database of transactions, each containing a set of items
 - Example: market baskets
- * Find all frequent itemsets
 - A set of items X is frequent if no less than s_{min}% of all transactions contain X
 - Examples: {diaper, beer}, {scanner, color printer}

	items
	diaper, milk, candy
T002	milk, egg
	milk, beer
	diaper, milk, egg
	diaper, beer
	milk, beer
	diaper, beer
	diaper, milk, beer, candy
T009	diaper, milk, beer

18

First try

♦ A naïve algorithm

- Keep a running count for each possible itemset
- For each transaction *T*, and for each itemset *X*, if *T* contains *X* then increment the count for *X*
- Return itemsets with large enough counts
- * Problem:
- Think: How do we prune the search space?

The Apriori property

- All subsets of a frequent itemset must also be frequent
 - Because any transaction that contains X must also contains subsets of X

19

20

If we have already verified that X is infrequent, there is no need to count X's supersets because they must be infrequent too

The Apriori algorithm

Multiple passes over the transactions

- * Pass k finds all frequent k-itemsets (itemset of size k)
- Use the set of frequent k-itemsets found in pass k to construct candidate (k+1)-itemsets to be counted in pass (k+1)
 - A (*k*+1)-itemset is a candidate only if all its subsets of size *k* are frequent

