Data Warehousing and
Data Mining

CPS 116

Introduction to Database Systems

Announcements (December 8)

< Homework #4 will be graded by this weekend
® Sample solution available now

< Remember your project demo slot!

+ Final exam on Tuesday, Dec. 13, 7-10pm
= Again, open book, open notes
= Focus on the second half of the course

= Sample final and solution available now

Data integration

< Data resides in many distributed, heterogeneous
OLTP (On-Line Transaction Processing) sources
= Sales, inventory, customer, ...
= NC branch, NY branch, CA branch, ...
% Need to support OLAP (On-Line Analytical
Processing) over an integrated view of the data
+ Possible approaches to integration

= Eager: integrate in advance and store the integrated data
at a central repository called the data warehouse

= Lazy: integrate on demand; process queries over
distributed sources—mediated or federated systems

OLTP versus OLAP

OLTP

< Mostly updates

< Short, simple transactions
% Clerical users

% Goal: ACID, transaction
throughput

OLAP

% Mostly reads

% Long, complex queries

< Analysts, decision makers

< Goal: fast queries

Implications on database design and optimization?

OLAP databases do not care much about redundancy

Eager versus lazy integration

Eager (warehousing)
% In advance: before queries
< Copy data from sources

@ Answer could be stale
@ Need to maintain
consistency
@ Query processing is local to
the warehouse
= Faster

= Can operate when sources
are unavailable

Lazy

% On demand: at query time
% Leave data at sources

@ Answer is more up-to-date

= No need to maintain
consistency

< Sources participate in
query processing
= Slower

= Interferes with local
processing

Maintaining a data warehouse

< The “ETL” process

= Extraction: extract relevant data and/or changes from sources

® Transformation: transform data to match the warehouse schema

®* Loading: integrate data/changes into the warehouse

< Approaches

® Recomputation

* Easy to implement; just take periodic dumps of the sources, say, every night

® What if there is no “night,” e.g., a global organization?

® What if recomputation takes more than a day?

= Incremental maintenance

¢ Compute and apply only incremental changes; fast if changes are small

* Not easy to do for complicated transformations

* Need to detect incremental changes at the sources

“Star” schema of a data warehouse

Dimension table
Dimension table

Store [SID Jcity
Product [PID Jname |cost s1__|Durham
pl_|beer |10 s2_|Chapel Hill
p2_|diaper |16 s3_|RTP
”'“”' : /
Sale [010 [date c10 [PI0 [SID [qty [price Fact table
100 [11/23/2001]c3 [p1 [s1 |1 [12 + Big
102 |12/12/2001[c3 [p2 |[s1 [2 17 s C I .
105 [12/24/2001[c5 [p1 [s3 |5 |13 # Constantly growing
< Stores measures (often
/ (S S aggregated in queries)
-
Customer |CID_|name |address city | Dimension table
C. Amy |100 Main St. Durham

¢4 [pen |102 Main St. purhan] * SMall
c5 [Coy [800 Eighth St. [Durham| < Updated infrequently

Data cube

Simplified schema: Sa/e (CID, PID, SID, gty)

Product
(c5,pl,83) =5
0(c3,p2,51) =2

’ :Stw‘e
p2f! s H s

WCYCRI MO Wrs YK RN
pf

Customer
ALL c3 c4 [S)

Completing the cube—plane

Total quantity of sales for each product in each store

SELECT PID, SID, SUM(qty) FROM Sale

Product
™71 GROUP BY PID, SID;
(ALL, pl,s3) = 5 (cS,pl,sS)Zi
(ALL, }22, sl) =2 % (@3, p2,s1) =2 hd
S Store

p2fALL, s s =4 S3
S (c5,pl,s1) =3

1 g
L sl Project all points onto Product-Store plane

Customer

ALL c3 c4 5

Completing the cube—axis

Total quantity of sales for each product
SELECT PID, SUM(qty) FROM Sale GROUP BY PID
Product

(ALL, pl.s3) =5 (c5,pl,83) = 5
(ALL, p2,s1) = 2 (3, p2,sl) =2 ©
(ALL, p2, ALL) Store
=2 pMALpLM=4 53 B
= (5, pl,s) =3
(ALL, pl, ALL) S
—9
’ sl Further project points onto Product axis
» Customer
ALL c3 c4 (&)

Completing the cube—origin

Total quantity of sales
Product SELECT SUM(qty) FROM Sale;

(c5,pl,s3) =5
o

(c3, p2,s1) = 2 e

(ALL, p2, ALL) Store

(c5,pl,sh)=3
(ALL, p1, ALL)
=9 s 3 g 3

Further project points onto the origin

[y Customer
ALL c3 c4 [S)
(ALL, ALL, ALL) = 11

CUBE operator '

% Sale (CID, PID, SID, qty)
< Proposed SQL extension:

SELECT SUM(qty) FROM Sale
GROUP BY CUBE CID, PID, SID;

H
< Output contains:

= Normal groups produced by GROUP BY
® (cl, pl, sl, sum), (cl, p2, s3, sum), etc.
® Groups with one or more ALL’s
* (ALL, p1, s1, sum), (c2, ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.
% Can you write a CUBE query using only GROUP BY’s?

Gray et al., “Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Total.” ICDE 1996

Automatic summary tables

% Computing GROUP BY and CUBE aggregates is
expensive

< OLAP queries perform these operations over and
over again

@ Idea: precompute and store the aggregates as
automatic summary tables (a DB2 term)
= Maintained automatically as base data changes

= Same as materialized views

Aggregation view lattice

GROUP BY &

Roll up

GROUP BY GROUP BY GROUP BY

CID PID SID
GROUP BY GROUP BY GROUP BY
CID, PID CID, SID PID, SID
Drill down \l/
GROUP BY A parent can be

CID, PID, SID computed from any child

Selecting views to materialize

% Factors in deciding what to materialize
® What is its storage cost?
® What is its update cost?
= Which queries can benefit from it?
® How much can a query benefit from it?
< Example
= GROUP BY @ is small, but not useful to most queries

= GROUP BY CID, PID, SID is useful to any query, but too large
to be beneficial

Harinarayan et al., “Implementing Data Cubes Efficiently.” SIGMOD
1996

Data mining

< Data — knowledge

< DBMS meets Al and statistics

% Clustering, prediction (classification and regression),
association analysis, outlier analysis, evolution
analysis, etc.

® Usually complex statistical “queries” that are difficult to
answer — often specialized algorithms outside DBMS

< We will focus on frequent itemset mining

Mining frequent itemsets

< Given: a large database of 710 [itens

. L. T001|diaper, milk, candy
transactions, each containing [7002[niT, egq
T003|milk, beer

a set Of items T004 |diaper, milk, egg
T005|diaper, beer
= Example: market baskets T006|miTk, beer
T007 [diaper, beer
< Find all frequent itemsets T008[diaper, nilk, beer, candy

T009 |diaper, milk, beer

= A set of items X is frequent if
no less than s _; % of all
transactions contain X

= Examples: {diaper, beer},
{scanner, color printer}

First try

% A naive algorithm
= Keep a running count for each possible itemset

= For each transaction T, and for each itemset X, if T'
contains X then increment the count for X

= Return itemsets with large enough counts

% Problem:

+ Think: How do we prune the search space?

The Apriori property

< All subsets of a frequent itemset must also be
frequent

= Because any transaction that contains X must also
contains subsets of X

@ If we have already verified that X is infrequent,
there is no need to count X’s supersets because they
must be infrequent too

20

The Apriori algorithm

Multiple passes over the transactions

% Pass £ finds all frequent £-itemsets (itemset of size £)

< Use the set of frequent £-itemsets found in pass £ to
construct candidate (64 1)-itemsets to be counted in
pass (k+1)

= A (k+1)-itemset is a candidate only if all its subsets of
size k are frequent

Example: pass 1

TID |items

T001[A, B, E

T002|B, D

T003|B, C

T004[A, B, D]
TO05[A, C Frequent 1-itemsets
T006|B, C itemset | count
T007 (A, C (A} 6
T008[A, B, C, E (8) 7
TO009|A, B, C) 6
TO010|F {0} 2
Transactions {E} 2

Smin?0 = 20% (Itemset {F} is infrequent)

Example: pass 2

22

Tolf?l ‘i\tems Generate Scan and Check
T , B, E . .
T00z[B. D candidates count min. support
T003[8, ¢ /—\/\/—\
133: ﬁ’ g’ 0 itemset |count itemset | count itemset |count
T006 B’ C {A} 6 {A,B} 4 {A,B} 4
T A’ 5 {B} 7 {A,C} 4 {A,C} 4
T008 A’ By G [{0 b (4,0} 1 (A,) 2
T009 A, B, C, {D} 2 {A,E} 2 {B,C} 4
To10 F’ > {E} 2 {B,C} 4 {8,D} 2
. Frequent {6,D} 2 {B,E} 2
Transactions . {B,E} 2
1-itemsets (c.0} 0 Frequent
Smin% = 20% (C.E} 1 2-itemsets
{D,E} 0
Candidate
2-itemsets
2
Example: pass 3
TID |items Generate Scan and Check
TO01|A, B, E 9 .
T002[8. D candidates count min. support
T003(B, C /—\/\/—\
Iggg :’ g’ D itemset | count itemset |count itemset |count
7006 B’ C {A,B} 4 {A,B,C} 2 {A,B,C} 2
* {A,C} 4 {AB,E}| 2 {ABLE}| 2
T007]A, C (A, E) 2 N
T008[A, B, C, E (B,c) n Candidate Frequent
TO09|A, B, C (B’D) > 3-itemsets 3-itemsets
T010(F (B’E) 2
Transactions
Frequent
Smin? = 20% 2-itemsets
24
Example: pass 4
TID |items Generate
T001[A, B, E L
T002]5. D candidates
7003[8, C /—\
W, (3 itemset | count | [itemset [count |
TOO5|A, C (A.B.C} 2
T006(B, C (A’B’E) 2 Candidate
IR, € 4-itemsets
TO08[A, B, C, E Frequent
T009|A, B, C 3-itemsets X
T010|F No more itemsets to count!
Transactions

Seinll = 20%

Example: final answer

itemset | count itemset | count itemset |count

(A} 6 {A,B} 4 {A,B,C}| 2
{8} 7 {A,C} 4 {A,B,E} 2
{c} o {A,E} 2 Frequent
{D} 2 {B,C} 4 3-it .
(£} 2 (8.0} 2 3-itemsets
Frequent (8,8} Z

1-itemsets Frequent

2-itemsets

