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Data Warehousing and 
Data Mining

CPS 116

Introduction to Database Systems
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Announcements (December 8)

Homework #4 will be graded by this weekend
Sample solution available now

Remember your project demo slot!

Final exam on Tuesday, Dec. 13, 7-10pm
Again, open book, open notes

Focus on the second half of the course

Sample final and solution available now
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Data integration

Data resides in many distributed, heterogeneous 
OLTP (On-Line Transaction Processing) sources

Sales, inventory, customer, …
NC branch, NY branch, CA branch, …

Need to support OLAP (On-Line Analytical 
Processing) over an integrated view of the data
Possible approaches to integration

Eager: integrate in advance and store the integrated data 
at a central repository called the data warehouse
Lazy: integrate on demand; process queries over 
distributed sources—mediated or federated systems
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OLTP versus OLAP

OLTP
Mostly updates

Short, simple transactions

Clerical users

Goal: ACID, transaction 
throughput

OLAP
Mostly reads

Long, complex queries

Analysts, decision makers

Goal: fast queries

Implications on database design and optimization?

OLAP databases do not care much about redundancy
“Denormalize” tables

Many, many indexes

Precomputed query results
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Eager versus lazy integration

Eager (warehousing)

In advance: before queries

Copy data from sources

Lazy

On demand: at query time

Leave data at sources

Answer could be stale

Need to maintain 
consistency

Query processing is local to 
the warehouse

Faster

Can operate when sources 
are unavailable

Answer is more up-to-date

No need to maintain 
consistency

Sources participate in 
query processing

Slower

Interferes with local 
processing
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Maintaining a data warehouse
The “ETL” process

Extraction: extract relevant data and/or changes from sources
Transformation: transform data to match the warehouse schema
Loading: integrate data/changes into the warehouse

Approaches
Recomputation

• Easy to implement; just take periodic dumps of the sources, say, every night
• What if there is no “night,” e.g., a global organization?
• What if recomputation takes more than a day?

Incremental maintenance
• Compute and apply only incremental changes; fast if changes are small
• Not easy to do for complicated transformations
• Need to detect incremental changes at the sources
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“Star” schema of a data warehouse

Big

Constantly growing

Stores measures (often 
aggregated in queries)

OID date CID PID SID qty price
100 11/23/2001 c3 p1 s1 1 12
102 12/12/2001 c3 p2 s1 2 17
105 12/24/2001 c5 p1 s3 5 13
... ... ... ... ... ... ...

PID name cost
p1 beer 10
p2 diaper 16
... ... ...

SID city
s1 Durham
s2 Chapel Hill
s3 RTP
... ...

CID name address city
c3 Amy 100 Main St. Durham
c4 Ben 102 Main St. Durham
c5 Coy 800 Eighth St. Durham
... ... ... ...

Dimension table
Dimension table

Dimension table

Fact table

Small

Updated infrequently

Product
Store

Sale

Customer
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Data cube

Customer

Store

Product

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

Simplified schema: Sale (CID, PID, SID, qty)

(c5, p1, s1) = 3(c3, p1, s1) = 1
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Customer

Store

Product

Completing the cube—plane

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Total quantity of sales for each product in each store

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT PID, SID, SUM(qty) FROM Sale
GROUP BY PID, SID;

Project all points onto Product-Store plane
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Completing the cube—axis

(ALL, p2, ALL)
= 2

(ALL, p1, ALL)
= 9

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Total quantity of sales for each product

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT PID, SUM(qty) FROM Sale GROUP BY PID;

Further project points onto Product axis

Customer

Store

Product

11

Customer

Store

Product

Completing the cube—origin

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Total quantity of sales

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT SUM(qty) FROM Sale;

Further project points onto the origin

(ALL, p2, ALL)
= 2

(ALL, p1, ALL)
= 9

(ALL, ALL, ALL) = 11
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CUBE operator
Sale (CID, PID, SID, qty)
Proposed SQL extension:
SELECT SUM(qty) FROM Sale
GROUP BY CUBE CID, PID, SID;
Output contains:

Normal groups produced by GROUP BY
• (c1, p1, s1, sum), (c1, p2, s3, sum), etc.

Groups with one or more ALL’s
• (ALL, p1, s1, sum), (c2, ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.

Can you write a CUBE query using only GROUP BY’s?

Gray et al., “Data Cube: A Relational Aggregation Operator 
Generalizing Group-By, Cross-Tab, and Sub-Total.” ICDE 1996
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Automatic summary tables

Computing GROUP BY and CUBE aggregates is 
expensive

OLAP queries perform these operations over and 
over again

Idea: precompute and store the aggregates as 
automatic summary tables (a DB2 term)

Maintained automatically as base data changes

Same as materialized views
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Aggregation view lattice

GROUP BY
CID, PID, SID

GROUP BY ∅

GROUP BY
CID, PID

GROUP BY
CID, SID

GROUP BY
PID, SID

GROUP BY
CID

GROUP BY
PID

GROUP BY
SID

A parent can be
computed from any child

Roll up

Drill down
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Selecting views to materialize

Factors in deciding what to materialize
What is its storage cost?

What is its update cost?

Which queries can benefit from it?

How much can a query benefit from it?

Example
GROUP BY ∅ is small, but not useful to most queries

GROUP BY CID, PID, SID is useful to any query, but too large 
to be beneficial

Harinarayan et al., “Implementing Data Cubes Efficiently.” SIGMOD
1996
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Data mining

Data → knowledge

DBMS meets AI and statistics

Clustering, prediction (classification and regression), 
association analysis, outlier analysis, evolution 
analysis, etc.

Usually complex statistical “queries” that are difficult to 
answer → often specialized algorithms outside DBMS

We will focus on frequent itemset mining
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Mining frequent itemsets

Given: a large database of  
transactions, each containing 
a set of items

Example: market baskets

Find all frequent itemsets
A set of items X is frequent if 
no less than smin% of all 
transactions contain X

Examples: {diaper, beer}, 
{scanner, color printer}

TID items
T001 diaper, milk, candy
T002 milk, egg
T003 milk, beer
T004 diaper, milk, egg
T005 diaper, beer
T006 milk, beer
T007 diaper, beer
T008 diaper, milk, beer, candy
T009 diaper, milk, beer
... ...
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First try

A naïve algorithm
Keep a running count for each possible itemset

For each transaction T, and for each itemset X, if T
contains X then increment the count for X

Return itemsets with large enough counts

Problem: The number of itemsets is huge!
2n, where n is the number of items

Think: How do we prune the search space?
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The Apriori property

All subsets of a frequent itemset must also be 
frequent

Because any transaction that contains X must also 
contains subsets of X

If we have already verified that X is infrequent, 
there is no need to count X’s supersets because they 
must be infrequent too
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The Apriori algorithm

Multiple passes over the transactions

Pass k finds all frequent k-itemsets (itemset of size k)

Use the set of frequent k-itemsets found in pass k to 
construct candidate (k+1)-itemsets to be counted in 
pass (k+1)

A (k+1)-itemset is a candidate only if all its subsets of 
size k are frequent
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Example: pass 1
TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

Transactions

smin% = 20%

itemset count
{A} 6
{B} 7
{C} 6
{D} 2
{E} 2

Frequent 1-itemsets

(Itemset {F} is infrequent)
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Example: pass 2
TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

Transactions

smin% = 20%

itemset count
{A} 6
{B} 7
{C} 6
{D} 2
{E} 2

Frequent
1-itemsets

Candidate
2-itemsets

itemset
{A,B}
{A,C}
{A,D}
{A,E}
{B,C}
{B,D}
{B,E}
{C,D}
{C,E}
{D,E}

Generate
candidates

itemset count
{A,B} 4
{A,C} 4
{A,D} 1
{A,E} 2
{B,C} 4
{B,D} 2
{B,E} 2
{C,D} 0
{C,E} 1
{D,E} 0

Scan and
count

itemset count
{A,B} 4
{A,C} 4
{A,E} 2
{B,C} 4
{B,D} 2
{B,E} 2

Frequent
2-itemsets

Check
min. support
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Example: pass 3
TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

Transactions

smin% = 20%

itemset count
{A,B} 4
{A,C} 4
{A,E} 2
{B,C} 4
{B,D} 2
{B,E} 2

Frequent
2-itemsets

itemset
{A,B,C}
{A,B,E}

Candidate
3-itemsets

Generate
candidates

itemset count
{A,B,C} 2
{A,B,E} 2

Scan and
count

Check
min. support

itemset count
{A,B,C} 2
{A,B,E} 2

Frequent
3-itemsets
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Example: pass 4
TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

Transactions

smin% = 20%

itemset count
{A,B,C} 2
{A,B,E} 2

Frequent
3-itemsets

Candidate
4-itemsets

itemset count

Generate
candidates

No more itemsets to count!



5

25

Example: final answer

itemset count
{A} 6
{B} 7
{C} 6
{D} 2
{E} 2

Frequent
1-itemsets

itemset count
{A,B} 4
{A,C} 4
{A,E} 2
{B,C} 4
{B,D} 2
{B,E} 2

Frequent
2-itemsets

itemset count
{A,B,C} 2
{A,B,E} 2

Frequent
3-itemsets


