Data Warehousing and Data Mining

CPS 116
Introduction to Database Systems

Announcements (December 8)

* Homework \#4 will be graded by this weekend
- Sample solution available now
* Remember your project demo slot!
\star Final exam on Tuesday, Dec. 13, 7-10pm
- Again, open book, open notes
- Focus on the second half of the course
- Sample final and solution available now

Data integration

* Data resides in many distributed, heterogeneous OLTP (On-Line Transaction Processing) sources
- Sales, inventory, customer, ...
- NC branch, NY branch, CA branch, ...
* Need to support OLAP (On-Line Analytical Processing) over an integrated view of the data
* Possible approaches to integration
- Eager: integrate in advance and store the integrated data at a central repository called the data warehouse
- Lazy: integrate on demand; process queries over distributed sources-mediated or federated systems

OLTP versus OLAP

OLTP	OLAP
* Mostly updates	* Mostly reads
* Short, simple transactions	* Long, complex queries
* Clerical users	* Analysts, decision makers
* Goal: ACID, transaction throughput	* Goal: fast queries
Implications on database design and optimization?	
OLAP databases do not care - "Denormalize" tables - Many, many indexes - Precomputed query results	uch about redundancy

Eager versus lazy integration	
Eager (warehousing)	Lazy
* In advance: before queries	* On demand: at query time
* Copy data from sources	* Leave data at sources
- Answer could be stale	σ Answer is more up-to-date
- Need to maintain consistency	- No need to maintain consistency
- Query processing is local to the warehouse	- Sources participate in query processing
- Faster	- Slower
- Can operate when sources are unavailable	- Interferes with local processing

[^0]

Completing the cube-plane

Product
Total quantity of sales for each product in each store

Data cube

CUBE operator

\div Sale (CID, PID, SID, qty)

* Proposed SQL extension: SELECT SUM(qty) FROM Sale GROUP BY CUBE CID, PID, SID;
* Output contains:
- Normal groups produced by GROUP BY
- (c1, p1, s1, sum), (c1, p2, s3, sum), etc.
- Groups with one or more ALL's
- (ALL, p1, s1, sum), (c2, ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.
* Can you write a CUBE query using only GROUP BY's?

Gray et al., "Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Total." ICDE 1996

Automatic summary tables

* Computing GROUP BY and CUBE aggregates is expensive
* OLAP queries perform these operations over and over again
σ Idea: precompute and store the aggregates as automatic summary tables (a DB2 term)
- Maintained automatically as base data changes
- Same as materialized views

Data mining

\star Data \rightarrow knowledge

* DBMS meets AI and statistics
* Clustering, prediction (classification and regression), association analysis, outlier analysis, evolution analysis, etc.
- Usually complex statistical "queries" that are difficult to answer \rightarrow often specialized algorithms outside DBMS
* We will focus on frequent itemset mining

Mining frequent itemsets

* Given: a large database of transactions, each containing a set of items
- Example: market baskets
\star Find all frequent itemsets
- A set of items X is frequent if
 no less than $s_{\text {min }} \%$ of all transactions contain X
- Examples: \{diaper, beer\}, \{scanner, color printer\}

First try

* A naïve algorithm
- Keep a running count for each possible itemset
- For each transaction T, and for each itemset X, if T contains X then increment the count for X
- Return itemsets with large enough counts
※ Problem: The number of itemsets is huge!
- 2^{n}, where n is the number of items
* Think: How do we prune the search space?

The Apriori property

* All subsets of a frequent itemset must also be frequent
- Because any transaction that contains X must also contains subsets of X
σ If we have already verified that X is infrequent, there is no need to count X 's supersets because they must be infrequent too

The Apriori algorithm

Multiple passes over the transactions

* Pass k finds all frequent k-itemsets (itemset of size k)
* Use the set of frequent k-itemsets found in pass k to construct candidate $(k+1)$-itemsets to be counted in pass $(k+1)$
- A $(k+1)$-itemset is a candidate only if all its subsets of size k are frequent

Example: pass 1

Frequent 1-itemsets

itemset	count
$\{A\}$	6
$\{B\}$	7
$\{C\}$	6
$\{D\}$	2
$\{E\}$	2

(Itemset $\{\mathrm{F}\}$ is infrequent)

Example: final answer

Frequent 1-itemsets

itemset	count	itemset	count	itemset	count
\{A\}	6	\{A, B\}	4	\{A,B,C\}	2
\{B\}	7	\{A,C\}	4	\{A,B,E\}	2
\{C\}	6	\{A, E\}	2	Frequent 3-itemsets	
\{D\}	2	$\{B, C\}$	4		
\{E\}	2	$\{B, D\}$	2		
Frequent 1-itemsets		\{B,E\}	2		
		Freq 2-item			

Frequent 2-itemsets

itemset	count	itemset	count	itemset	count
\{A\}	6	\{A, B\}	4	\{A,B,C\}	2
\{B\}	7	\{A,C\}	4	\{A,B,E\}	2
\{C\}	6	\{A, E\}	2	Frequent 3-itemsets	
\{D\}	2	$\{B, C\}$	4		
\{E\}	2	$\{B, D\}$	2		
Frequent 1-itemsets		\{B,E\}	2		
		Freq 2-item			

[^0]: Maintaining a data warehouse

 * The "ETL" process
 - Extraction: extract relevant data and/or changes from sources
 - Transformation: transform data to match the warehouse schema
 - Loading: integrate data/changes into the warehouse
 * Approaches
 - Recomputation
 - Easy to implement; just take periodic dumps of the sources, say, every night
 - What if there is no "night," e.g., a global organization?
 - What if recomputation takes more than a day?
 - Incremental maintenance
 - Compute and apply only incremental changes; fast if changes are small
 - Not easy to do for complicated transformations
 - Need to detect incremental changes at the sources

