
CPS234 Computational Geometry September 1, 2005

Lecture 2: Convex Hulls

Lecturer: Pankaj K. Agarwal Scribe: Sam Slee

2.1 Introduction to Convex Hulls

This lecture will introduce the idea of aconvex hullalong with the necessary mathematical definitions for
understanding it. After introducing the background concepts, two algorithms for computing convex hulls will
be given. Only concepts in 2D (<2) will be covered in this lecture, leaving later lectures to generalize to
higher dimensions.

2.1.1 Convex Sets and Half Planes

Convex Sets One common problem that arises in computational geometry is the problem of computing
the convex hullof a set of points. In this lecture, we will cover what a convex hull is and introduce some
techniques for computing a convex hull for points in<2. These are also known asplanar convex hulls. Later
in the course this will be generalized to higher dimensions for points in<d for d > 2. Before defining what
a convex hull is though, it is helpful to first define aconvex set.

Definition 1 Given a set of pointsC ⊆ <d, C is convex and forms aconvex setif ∀p, q ∈ <2:

p, q,∈ C ⇒ pq ⊆ C,

p, q ∈ C ⇒ λp + (1− λ)q ∈ C,

∀ 0 ≤ λ ≤ 1.

That is, if we have two pointsp andq that are contained in the setC, if C is convex then all points on a straight
line segment betweenp andq must also be contained inC. As part of that definition aconvex combination
of p andq was used.

Definition 2 A convex combinationof two pointsp and q is any combinationλp + (1 − λ)q such that
0 ≤ λ ≤ 1.

Below some examples of convex and non-convex sets are given. Note that convex sets do not have to be
bounded, as is shown in the last example.

2-1

Lecture 2: September 1, 2005 2-2

With the definition of convex sets in hand we are now ready to define convex hulls. The following definition
is for sets of points in<2 but may be generalized to higher dimensions.

Definition 3 Let S be a set of points⊆ <2. Theconvex hullof S, denoted conv(S), is the smallest convex
set that containsS.

In the case of two dimensional points, one common analogy is to think of the points as pegs or nails in a
board. Then take a rubber band, stretched to contain all of the pegs, and allow that rubber band to shrink
down in size around those pegs as far as it can. This will form straight edges between the outer pegs/points
which mark the boundaries of the convex set. An example convex hull is shown below.

Lecture 2: September 1, 2005 2-3

Half Planes Another way to think about convex hulls involveshalf planes. Consider a liney = ax + b in
<2. That line divides the 2D plane into twohalf planes: y ≥ ax+b andy ≤ ax+b. Note that the distinction
between aline, which continues infinitely in two directions, and aline segment, which is finite and has two
endpoints. This is important here as only a line will work for dividing a plane into two halves. In higher
dimensions this idea of lines and half planes may be generalized tohyper planesin <d dividing spaces in<d

into half spaces.

Returning to the concept of convex hulls, we may see now that a convex hull in<2 is just a combination of
half planes. A definition is given below, followed by an example diagram of a convex hull made from the
intersection of half planes.

Definition 4 conv(S) = ∩h | h: is a half plane and S⊆ h

In the diagram above, it can be seen that the convex hull pictured is comprised of the intersection of several
half planes. Everything below lineL1 is a half plane, as is everything aboveL2, belowL3 and to the left

Lecture 2: September 1, 2005 2-4

of L4. Most of the lines that define these half planes lie on the line segments that comprise the boundary of
the convex hull. Everything to the left ofL5 is a half plane that also intersects the others, but it does nothing
to change the convex hull formed by the other half planes. A half plane boundary that does not lie on the
boundary of the convex hull is calledredundant. To denote the boundary of a convex hull of a setS, we use
the notation:∂ conv(S).

Aside: Note that anintersectionof convex sets is also convex. One example of this was the intersection of
half planes shown above. However, aunion of convex sets isnot convex. A clear example of this would
be the union of two slightly over-lapped circles (like you might see for a Venn Diagram). Both circles form
convex sets separately, but when slightly overlapped we can see that their union is clearly not a convex set.
In the diagram below, the blue circle and the red circle each separately form convex sets. Their intersection
— the purple area — is also convex. However, their union — all of both circle areas combined — is clearly
not convex.

2.1.2 Convex Hull Properties

Returning to convex hulls, in the examples that have been shown so far it can be seen that the boundary of
a convex hull is comprised of vertices and edges. A given convex hull may then be defined by the points on
its boundary, which are typically given in counterclockwise order. Note that when the boundary points are
sorted in this order, the slopes of the edges between them are also sorted. This fact will be utilized in some
of the methods for computing the convex hull of a set of points.

When traversing the edges on the boundary of a convex hull in<2 it can be seen that we only makeleft turns.
In fact, given 3 consecutive pointsa, b, c ∈ <2 we can perform anorientation test to decide which of 3 cases
the middle vertexb falls into.

reflex vertex − 6 abc makes a right turn
convex vertex − 6 abc makes a left turn
degenerate vertex− 6 abc makes a straight line

Example angles showing these three cases are given below.

Lecture 2: September 1, 2005 2-5

It can be noted that, when we traverse the vertices in counterclockwise order, a convex polygon will only
have convex vertices. Thus you will only make left turns when traversing its boundary in this order. Neither
a reflex vertex nor a degenerate vertex should be found on the convex hull. That having a reflex vertex would
cause the polygon to no longer be convex is clear. However, having a degenerate vertex would keep the
polygon convex, but is unnecessary for specifying the boundary of the polygon. The polygon will have the
exact same boundary and shape whether that degenerate vertex is included or not. Examples of polygons
with reflex or degenerate vertices are given below.

Now that we have seen the 3 possible cases for a given angle, we can now look at how an orientation test
might be performed to categorize an angle formed by 3 pointsa, b, c ∈ <2. Let a = (a1, a2), b = (b1, b2),
andc = (c1, c2) be the three points comprising an angle. We then define a matrix

M =

 a1 a2 1
b1 b2 1
c1 c2 1


and perform the orientation testorient(a,b,c)by finding the value of the determinate of the matrix M, det(M),
as follows:

Lecture 2: September 1, 2005 2-6

orient(a,b,c)=

 left (convex vertex) if det(M) > 0
linear (degenerate vertex) if det(M) = 0
right (reflex vertex) if det(M) < 0

Homogenous Coordinates In computing the matrixM above we used thehomogenous coordinatesfor
the pointsa, b, andc. A triple of real numbers(x, y, t) forms a set of homogenous coordinates for a point
p ∈ <2 with coordinates(x/t, y/t). In our example, we used homogenous coordinates with a value of
t = 1. This could possibly correspond to the pointQ = (x0, y0, 1) in the diagram below. In that diagram,
a lineL is drawn from the origin toQ. Any point on this line, excluding the origin, would serve as a set of
homogenous coordinates for(x0, y0). Homogenous coordinates have many uses, typically for making certain
transformation calculations easier (such as our matrix calculation above).

2.2 Algorithms For Computing 2D Convex Hulls

Now that we have built up all of the necessary background, we are finally ready to consider the question of
actually computing a convex hull of a set of points.

Input: S ⊆ <2, a set ofn points.
Output: conv(S).

Lecture 2: September 1, 2005 2-7

This problem commonly occurs in computational geometry. It may be calculated as a problem of its own
interest, or as a set in an algorithm for solving a larger problem. One algorithm for computing a convex hull
in <2 is Graham’s Scan Algorithm.

2.2.1 Graham’s Scan Algorithm

The Graham’s Scan algorithm is a common one for computing the convex hull of a set of points in<2.
Conceptually, it works as follows:

• Choose the point with the lowesty coordinate and label this pointp0.

• Sort the remaining points according to their angle withp0 (the angle formed by a horizontal line from
p0 out tox = ∞ and the line segment fromp0 to the point in question). Label those sorted pointsp1

to pn−1 in their sorted order.

• Add p0 andp1 to the convex hull to start.

• Visit pointsp2 to pn−1 in that sorted order, gradually adding points to the convex hull.

• Let pi be the point that you’re visiting next. If you make a left turn to get from the last two points added
into the convex hull topi, then addpi to the convex hull.

• If, however, you had to make a right turn to get topi, keep removing the last point added to the convex
hull until you do make a left turn to get topi.

In the above algorithm, we are only keeping points such that we keep making left turns around the boundary
of the convex hull. We’re traveling around the boundary in counterclockwise order because that’s how we
initially sorted the pointsp1 to pn−1 with respect to their angle withp0. Then, traveling around the boundary
in this order, if we keep turning left then we have a boundary for a convex polygon. A right turn would give

Lecture 2: September 1, 2005 2-8

a non-convex shape and a straight line (no turn) would indicate a degenerate point that didn’t need to be on
the hull.

In generating this convex hull, we’re adding to the end of a set of points and sometimes removing from
that end of points. Since we’re only adding or removing from one end, using astackdata structure is a
good choice for storing our convex hull. (Recall that a stack works just like a stack of plates, adding and
removing only from the top of the stack.) With our stack data structure namedΣ we’ll use PUSH(pi, Σ) to
denote addingpi to the top of the stack. We’ll also use POP(Σ) to denote removing the top element from
the stack. Furthermore, top(Σ) and second(Σ) will denote the top and second from the top elements on the
stack, respectively. While in a stack we usually can’t see the second element from the top, this could easily
be implemented by adding a few holding variables to go along with our stack. Finally, we are ready to give a
more rigorous pseudo-code implementation for Graham’s Scan algorithm.

Graham’s Scan Algorithm

Input: S, a set ofn points in<2.
Output: Σ, a stack containing conv(S) with the points in counter-clockwise order.

p0 ← the point inS with the minimumy-coordinate.
Sort S - {p0} with the orientations ofp0pi so that they are orderedp1, p2, . . . , pn−1.
PUSH(p0,Σ)
PUSH(p1,Σ).
for (i == 2) ton− 1 do

while (orient(second(Σ), top(Σ), pi) ≤ 0) do
POP(Σ)

end-while
PUSH(pi,Σ)

end-for
.. Comment:Σ now contains the sequence of points forming conv(S) in counter clockwise order.
return Σ

In analyzing the running time of this algorithm, we can note two major parts: (1) sorting the points by their
orientationp0pi, and (2) building conv(S) by traversing the points, pushing and popping as necessary. The
sorting part may take up toO(n log n) time, but we will denote it asSort(n)here.

In the second part, we may perform pushes and pops in many different combinations. However, any given
point pi may only be pushed once and may only be popped off at most once. Thus, we can say that this
section takesO(n) time. Therefore, the entire running time may be given as:Sort(n) + O(n). Furthermore, if
sorting takesO(n log n) time in the worst case (in the decision tree model), then the worst case running time
for Graham’s Scan Algorithm isO(n log n).

2.2.2 Gift Wrapping Algorithm

Another notable algorithm for computing 2D convex hulls is the gift wrapping algorithm (also known as the
Jarvis March algorithmfor the 2D case). As the name suggests, we will basically be traversing or ”wrapping”

Lecture 2: September 1, 2005 2-9

around the convex hull of the set of points. Unlike with Graham’s Scan Algorithm, we will not ever ”remove”
points from the convex hull that we’re building. We will, however, still start out with the point having the
minimumy-coordinate — labeled ”a” — out of the given set of pointsS. Note that the important fact of the
starting point - with this algorithm and with the Graham’s Scan algorithm - is that we start with a point that is
”extreme” in some direction. In this case, our starting point is ”extreme” in the sense that it has the minimum
y-coordinate. This ensures that it will be on the convex hull. (We’re ignoring the case for multiple points
tying for the lowesty-coordinate).

The initial pointa is first added to the convex hull (since we picked in knowing it would be included). Then,
starting with this initial pointa, the gift wrapping algorithm next finds a pointb such that all other points in
the given setS are to the ”left” ofab. That is, for any other pointc ∈ S − {a, b} traversinga to b to c causes
a left turn. Such a pointb may be computed inO(n) time by simply comparing the polar angles of all points
in S − {a} with respect toa.

Once the pointb has been found,b is added to the convex hull and is relabeled as the new ”a”. We now repeat
the process from this new pointa and find a new suitable pointb. This continues until we wrap back around
to havingb equal the first point added to the convex hull. By this time we will have fully computed the convex
hull. More rigorous pseudo-code for this algorithm is given below.

Gift Wrapping Algorithm

Input: S, a set ofn points in<2.
Output: Σ, a stack containing conv(S) with the points in counter-clockwise order.

p0 ← the point inS with the minimumy-coordinate.
a← p0

. . Comment: For some(pi 6= p0)
b← pi

PUSH(a,Σ)
while(b 6= p0)

find the pointpi ∈ S − {a, b} such that6 abpi forms the largest possible angle
PUSH(pi,Σ)
a← b
b← pi

end-while
.. Comment:Σ now contains the sequence of points forming conv(S) in counter clockwise order.
return Σ

In analyzing this algorithm we note that it runs through thewhile loop once for every point on the convex
hull. If the number of these points ish, then that’sh such loops. Furthermore, on every loop it has to check
almost every point, taking constant time to check each one, for a total time ofO(n) on each loop. This leads
to an overall running time ofO(nh), wheren is the number of points in the setS andh is the number of
points on its convex hull. This running time may be reduced toO(n log h) — which is optimal under the
decision tree model. We will see some techniques for how this is done in the next lecture.

Even for the above version of the Gift Wrapping Algorithm that runs inO(nh) time it can be useful if we
have a small value forh. The best possible case would then be for only 3 points forming a triangle for the
convex hull. All other points would then rest inside of this triangle. Conversely, the other extreme of having

Lecture 2: September 1, 2005 2-10

all n points on the convex hull would be the worst possible case for this algorithm. You can think of such a
case happening if then points all lie on the boundary of an imaginary circle.

2.2.3 More About Convex Hulls

Polygon Containment Another useful question that we might ask is if for a given pointq and convex
polygonP , is q ∈ P . This can be quickly determined inO(log h) time if we already have the convex hull
of P computed and properly organized. The organization required is to have the points on the convex hull
divided into two subsets: the upper convex hull and the lower convex hull. Furthermore, the points in those
points need to be sorted byx-coordinate within their subsets.

Once we have the upper and lower convex hull subsets organized, we are ready to determine if we haveq ∈ P .
If so, then a vertical line drawn straight up fromq’s should cross exactly one edge on the upper convex hull.
Similarly, a vertical line drawn down fromq should cross exactly one edge on the lower convex hull. We can
perform binary search on the vertices in the upper hull and on the vertices in the lower hull to find if such
edges exist. This takes onlyO(log h) time if we already have the upper and lower hulls organized.

Adding To a Polygon For a pointq that is outside of the convex polygonP , we can prepare for the possible
case of adding that pointq to the convex hull ofP . To do this, think of the pointq as a light source shining
onto the polygonP . The edges on the polygon that are lighted byq fall between two vertices that are
calledsupporting tangent vertices. These are the outermost vertices that the twotangent vectorst1 andt2
intersect. This is shown in the diagram below. In the representation,q is the point outside of the polygon,t1
andt2 are the two tangent vectors andv1 andv2 are the supporting tangent vertices on the convex hull of the
polygon. A claim about computing these tangent lines is also given below, without proof.

Claim 1 The tangent linest1 andt2 can be computed inO(log n) time by binary search.

In addition, a similar claim may be made when we are dealing with two disjoint polygons instead of a polygon
and an exterior point.

Lecture 2: September 1, 2005 2-11

Claim 2 Given two disjoint convex polygons, the 4 supporting tangent verticesv1, v2, u1, u2 may be found
in O(log n) time.

Again, this claim is given without proof, but it may be inferred that binary search may again be used to get
this result. Once we have the ability to compute the tangent lines and supporting tangent vertices — for a
point not contained in a set of pointsP — then we are ready to add that point toP and update the convex
hull accordingly.

Insert(q, P)

Input: A point q and a polygonP .
Output: The new convex hull, conv(P).

if q 6∈ P
ComputePL, PR : the supporting vertices ofq
Discard the portion of the conv(P) betweenPL andPR

Insertq into conv(P).
end-if
return conv(P)

Bonus: Width of a Convex PolygonOne other thing that we might like to compute about a convex polygon
is the width of that polygon.

Definition 5 Thewidth of a convex polygon is the minimum distance between parallel lines of support.

One method for computing this is therotating caliper algorithm . It works by considering parallel lines
drawn tangent to the polygon. If the parallel tangent lines are first horizontal (degree 0) then each is resting
either on a vertex or an edge on the convex hull of the polygon. We can then rotate the angle of the parallel
tangent lines and sweep through an entire 360 degree rotation. Along the way the separation between the
tangent lines will change as the lines rest on different vertices/edges.

The width of the polygon is then the minimum separation between the parallel tangent lines during the
sweep. Although this is a simple concept, a single picture is inadequate for demonstrating it. However,
this website:http://www-cgrl.cs.mcgill.ca/ godfried/research/calipers.html, provides an animated image for
rotating calipers as well as some more information about the algorithm and its use. In addition to calculating
the width of a single convex polygon, the rotating caliper algorithm may also be modified to calculate the
maximum or minimum distance between two disjoint convex polygons, among other things.

http://www-cgrl.cs.mcgill.ca/~godfried/research/calipers.html

	Introduction to Convex Hulls
	Convex Sets and Half Planes
	Convex Hull Properties

	Algorithms For Computing 2D Convex Hulls
	Graham's Scan Algorithm
	Gift Wrapping Algorithm
	More About Convex Hulls

