
CPS234 Computational Geometry September 13, 2005

Lecture 5: Line Segment Intersection Detection

Lecturer: Pankaj K. Agarwal Scribe: Sam Slee

5.1 Introduction to Segment Intersection

After focusing on convex hulls for the past few lectures, today we move on to detecting intersections between
geometric objects. While there are algorithms for detection with any type of object this lecture will just cover
the simplest case: detecting an intersection between 2 line segments within a set of line segments.

5.1.1 Types of Intersection Detection Algorithms

The line segment intersection problems that we’ll look at today deal only with with line segments defined
between points in 2D. That is, for any line segmentei = (ai, bi), the(ai, bi) pair give the two points where
the line segment starts and ends. For each of those points we have thatai ∈ <2 andbi ∈ <2. Since the line

5-1

Lecture 5: September 13, 2005 5-2

segment is defined by these two points, we may also think thatei ∈ <4. Now, given a setS of these line
segments, we can define 3 different types of intersection detection algorithms.

Input: S = {e1, e2, . . . , en}
ei = (ai, bi)
ai, bi ∈ <2

Output:

• Detection Algorithm: Does a pairei, ej ∈ S intersect?

• Reporting Algorithm: Return all intersecting pairs inS (or return all intersection points.)

• Counting Algorithm: Count the number of intersecting pairs.

For now we will focus on the reporting problem of finding all intersecting pairs. The algorithm that we’ll
look at later will solve this problem and could also be used to solve the counting problem. However, since
the counting problem requires a less detailed answer it would seem that it could be solved more quickly.

Assumptions on Input To make this problem a little easier to deal with, we’ll make some assumptions
on our input setS of line segments. These set of assumptions are used to remove troublesome cases that
are referred to asdegenerate casesand the total set of assumptions is referred to as having our points and
segments ingeneral position. Be aware, though, that “general position” is a term that is used often with
geometric problems and can refer to different sets of assumptions for different problem types. For our segment
intersection problem, it refers to the following set of 3 simplifying assumptions.

• x-coordinates of all endpoints (of line segments) and all intersection points are distinct.

• Only 2 segments pass through a given intersection point.

• Endpoints do not lie on any other line segment.

The following pictures give examples of cases that are disallowed by those assumptions made above.

Lecture 5: September 13, 2005 5-3

5.1.2 A Sweeping Vertical Line

With 3 assumptions made to simplify our problem, we can now use a relatively simple concept to detect
intersections between the segments in our input setS. Given our setS, we can now conceptually draw a
vertical line through each endpoint and intersection point from that set. Graphically, this results in a picture
similar to the following example. The segments below are each labeledei for some unspecified ordering of
i, and the vertical lines are labeledlk with the leftmost line beingl0 and with the index labelk increasing for
lines to the right. Thus, for a given vertical linelk, lk−1 is the next vertical line to its left andlk+1 is the next
vertical line to its right.

Before moving on, it’s worth noting the help that our 3 simplifying assumptions gave here. With those as-
sumptions made, we can conclude that we have at most a single vertical line at any givenx-coordinate. The
assumption that the endpoints do not lie on any other segment keeps us from having an endpoint and inter-
section point at the exact same point. The assumption that only 2 segments pass through a given intersection
point lets us assume that there’s a unique intersection point for each intersection. Finally, the big assumption
that thex-coordinates of all endpoints and all intersection points are unique — combined with the 2 other
assumptions — assures us that all of our vertical lines in the example above are unique. We don’t have to
worry about vertical lines being stacked on top of each other at the samex-coordinate.

Remembering this information, we are now ready to make 2 important claims. These claims are about the
vertical ordering of the line segmentsei at a given vertical linelk. This vertical ordering is just made by the
y-coordinate values of the segments at thex-coordinate where the vertical linelk lies.

Claim 1 For any vertical lineslk and lk−1, the vertical ordering of the segments is the same betweenlk−1

andlk.

Lecture 5: September 13, 2005 5-4

Claim 2 For any vertical lineslk and lk−1, if ei ∩ ej lies on vertical linelk, thenei andej are adjacent in
the vertical ordering betweenlk−1 andlk.

Justifying the Claims The first claim that the vertical ordering of the segments stays the same between
adjacent vertical lines should make sense. Between two adjacent vertical lineslk−1 and lk there are no
intersection points — because if there were any we would have another vertical line betweenlk−1 and lk.
Since no intersections occur in this area we can’t have any segments swap places in the vertical ordering.
Similarly, we know that no left or right endpoint occurs in the space betweenlk−1 andlk. This means that no
segment is added to or removed from our ordering within this space. Thus, the vertical ordering stays exactly
the same — the same segments and the same order — in the space between any pairlk−1, lk of adjacent
vertical lines.

Now for the second claim, that segmentsei andej are adjacent in the vertical ordering betweenlk−1 andlk
before the segments cross at thex-coordinate oflk. To see why this is so, remember our claim that only 2
segments pass through any given intersection point. So, onlyei andej can meet at their intersection point
on the vertical linelk. All other segments must pass throughlk strictly above or below bothei andej . This
means thatei andej are adjacent in the vertical ordering atlk. Further, since the first claim we made said that
the vertical ordering remained unchanged between adjacent vertical lines, we must have that segmentsei and
ej were adjacent in the vertical ordering in the entire space between lineslk−1 andlk.

5.2 Algorithms For Segment Intersection Detection

Using the claims and concepts given by the vertical line techniques just described, we can now start piecing
together an algorithm for reporting line segment intersections. To do this, we’ll conceptually sweep a single
vertical line from left to right, maintaining the vertical ordering as we go. Our claim in the previous section
that no changes occur in this vertical ordering between adjacent vertical lineslk−1 and lk is particularly
helpful here.

Those vertical lineslk were just drawn at segment endpoints or intersection points. So, now when we sweep
a single vertical line from left to right we really only have to jump it from one endpoint or intersection point
to the next one in the left-to-right ordering. With a little bit of work to update the vertical ordering changes
at each point, this vertical line sweep can accurately portray the vertical ordering through the entire space
<2. One possible catch is that when we start running any such algorithm we only know the endpoints. We
can’t already know the intersection points because that’s what we’re trying to find. It turns out to be an easy
problem to fix as our algorithm will find those intersection points as it sweeps.

Data Structures One last tool we need for our algorithm is a data structure capable of holding and maintain-
ing the data that we need. Specifically we’ll use two data structures: (1) a tree structureT for maintaining the
current vertical ordering of segments intersected by the line sweep and (2) a queueQ holding the endpoints
and intersection points still to be visited by our line sweep in left-to-right order. For the tree structure most
any good, dynamic data structure such as a heap or red-black tree will work. For the queue, we’ll need a
priority queue so that we can insert intersection points into the proper order as we discover them.

Notation For both data structures we’ll use the notation INSERT(e,A) for inserting a segment/pointe into
the data structureA. For the tree structure, a segment is inserted based on its place in the vertical ordering
at the currentx-coordinate of the line sweep. For the priority queue, a point is inserted into the left-to-right
order based on itsx-coordinate. The function DELETE(e, T) removese from T and DELETE-MIN(Q)

Lecture 5: September 13, 2005 5-5

removes the leftmost element in the priority queueQ and returns it to the program. SWAP(a, b, T) causes
the segmentsa andb to swap places in the vertical ordering maintained by the treeT . Finally, a ∩ b is used
to denote the point of an intersection between two segmentsa andb and∅ is used to denote an empty set.

5.2.1 The Line-Sweep Algorithm

Line-Sweep Algorithm

Input: S, a set ofn line segmentsei = (ai, bi) with ai, bi ∈ <2.
Output: A listing of all of the segment pairsei, ej ∈ S that intersect.

.. Comment:Initializing Q to hold the endpoints andT to be empty.
Q← endpoints of allei ∈ S.
T ← ∅

while(Q 6= ∅)
p = DELETE-MIN(Q)

.. Comment:First case.
if p is a left endpoint of a segmente

INSERT(e, T)
Let ei andei+1 be the segments adjacent toe in T .

if ei ∩ e 6= ∅
INSERT(ei ∩ e,Q)

if ei+1 ∩ e 6= ∅
INSERT(ei+1 ∩ e,Q)

.. Comment:** Extra statement to be inserted here is explained in section 5.2.3.

.. Comment:Second case.
if p is a right endpoint of a segmente

DELETE(e, T)
Let ei andei+1 be the segments adjacent toe in T .
if (ei ∩ ei+1 6= ∅) && (x(ei ∩ ei+1) > x(p))

INSERT(ei ∩ ei+1, Q)

.. Comment:Third case.
if p is a intersection pointp = ei ∩ ei+1

.. Comment:Reporting an intersecting pair that was found.
REPORT(ei ∩ ei+1)
SWAP(ei, ei+1, T)
if (ei−1 ∩ ei+1 6= ∅) && (x(ei−1 ∩ ei+1) > x(p))

INSERT(ei−1 ∩ ei+1, Q)
if (ei+2 ∩ ei 6= ∅) && (x(ei+2 ∩ ei) > x(p))

INSERT(ei+2 ∩ ei, Q)
end-while

Lecture 5: September 13, 2005 5-6

Figure 5.1: The figures given above show the 3 possible cases: (1)p represents a left endpoint, (2)p
represents a right endpoint, or (3)p represents an intersection point.

5.2.2 Analysis of the Line-Sweep Algorithm

Correctness The Line-Sweep Algorithm just described was first given by Bentley and Ottmann in 1979.
Algorithms of this type — with a sweeping line in<2 or a sweeping hyper-plane in higher dimensions — are
used in various computational geometry problems. To verify the correctness of this line-sweep algorithm we
can note what happens at each of the 3 possible cases for a pointp taken from the priority queueQ. If p is a
left endpoint — the leftmost case in figure 5.1 — then clearly we must add the segmente that it represents to
the vertical ordering. In the same way we must removee if p is a right endpoint — the middle case in figure
5.1. Similarly, ifp is an intersection point — the rightmost case in figure 5.1 — then we know that there is
a pair, and only one pair, of intersecting segments at this vertical position. Thus, we have to swap those two
segments in the vertical ordering.

Finally, when looking for new intersections in each of 3 possible cases for a pointp our job is fairly simple. It
is always sufficient to check only the segments that have just been made adjacent to each other in the vertical
ordering. This comes from the second claim that we made long ago. When two segmentsei andej intersect
at a vertical linelk, they must have been adjacent in the vertical ordering in the space betweenlk−1 andlk.
Thus, we will always run across a vertical linelk−1 where two segments are adjacent before the linelk where
those segments would intersect. In this way, if we just always check newly adjacent pairs of segments we are
guaranteed to detect a coming intersection point before our left-to-right sweep reaches they-coordinate of
the intersection point.

Time and Space Analysis Now that we have the intuition for why the algorithm is correct, we can look
at the time and space required for the algorithm to run. Letn be the number of line segments in the input
setS and letk be the number of intersection points between the segments in that set. Thewhile-loop that
takes up the majority of the program runs once for every endpoint or intersection point, so that equates to
2n + k runs of that loop. For the running time of each iteration, note that every operation on our data
structures takesO(log n) time. Thus, each iteration will only takeO(log n) time and the total running time
is O((n + k) log n).

As for the space required, note that the worst possible case for the tree data structure is to store alln line
segments at the same time. So, it takesO(n) space. For the priority queue, it’s worst case would be to
store all endpoints and intersection points at the same time, a total ofO(n + k) space. Thus, the total space

Lecture 5: September 13, 2005 5-7

requirement isO(n + k).

About Earlier Assumptions Before the line-sweep algorithm was described we made 3 simplifying assump-
tions that helped us design the algorithm. Looking back, we can now see that it’s not difficult to overcome
those assumptions to allow the algorithm to work in general cases. One of the assumptions that we made was
that only 2 segments passed through a given intersection point. This allowed us to perform only a single swap
at each intersection point to update the vertical ordering of the segments.

At first, it may seem that removing this assumption would possibly require our algorithm to perform much
more work when dealing with each intersection point. Indeed, the algorithm must be modified and more
work is now needed for some intersection points. Still, we get that the overall workload remains reasonable.
Specifically, consider an intersection pointp and degree(p) or the number of segments passing throughp.
When summing over all possible intersection points we get that:

∑
p

degree(p) = O(n + k)

Although not proven here, this result comes from results about planar graphs and the fact that our set of
line segments can be used to form a planar graph. In any case, this bound means that we can perform the
necessary reordering, even at the busiest intersection points, and still leave the final running time intact. Also,
for the case of thex-coordinates of endpoints not being unique, we can modify the algorithm so that right
endpoints are handled first, then intersection points and finally left endpoints. This will save some time
by first removing segments that no longer need to be maintained and will wait to add new points after any
swapping of old points has already been done. As for ties, like between two intersection points with the same
x-coordinate, some other pre-defined ordering may be used if necessary.

5.2.3 Complexity Results of Segment Intersection Detection Problems

For the line-sweep algorithm described in this lecture we hadO((n + k) log n)-time andO(n + k)-space
requirements. While not bad, these bounds can be improved. In the 90’s Pach and Sharir proved a lower bound
of Ω(n lg n) for the running time and an upper bound ofO(n lg2 n). Another lower bound ofΩ(n log n+k)-
time has also been shown and achieved for randomized algorithms. We will see such an algorithm in the next
lecture. For the space requirement, Brown in 1979 showed how onlyO(n) space could be needed. This was
done by including a simple line in our line-sweep algorithm at the end of the first case forp (whenp was a
left endpoint for a segmente).

** if x(ei ∩ ei+1) > x(p)
DELETE(ei ∩ ei+1, Q)

At the point where this line is inserted, a new segmente has just been placed betweenei andei+1 in the
vertical ordering. Yet, we know thatei andei+1 must be adjacent in the vertical ordering just before they
intersect. So, we know that these two segments will again become adjacent in the vertical ordering, and
since our algorithm checks all possible cases where this could happen, we will be able to detect theei ∩ ei+1

intersection point again later in the running of the algorithm. This means we can safely delete that intersection
point for now. It also means that we’re now able to store onlyO(n) points in the queue without increasing
the time complexity of the line-sweep algorithm beyondO((n + k) log n).

Lecture 5: September 13, 2005 5-8

The bounds given above were for the reporting version of the segment intersection problem. This was the
problem that our line-sweep algorithm was designed to solve and the focus of this lecture. However, the other
types of problems — detection and counting — are also important and have known complexity bounds. For
thedetectionproblem, matching upper and lower bounds have been found to give the complexityΘ(n log n).
A bound on a similar question can be used to give the lower bound for this result.

Input: A set of elements{x1, x2, . . . , xn}
Output: Are all of thexi’s unique? (Yes/No)

This problem has a lower bound ofΩ(n log n) and can also be used to lower bound the detection problem.

	Introduction to Segment Intersection
	Types of Intersection Detection Algorithms
	A Sweeping Vertical Line

	Algorithms For Segment Intersection Detection
	The Line-Sweep Algorithm
	Analysis of the Line-Sweep Algorithm
	Complexity Results of Segment Intersection Detection Problems

