Lecture 6: RIC for Segment Intersections

Lecturer: Pankaj K. Agarwal
Scribe: Amber Stillings

6.1 Lecture Summary

This lecture will describe a Randomized Incremental Algorithm (RIC) for Segment Intersections. The analysis for this algorithm is given, and it is shown that the expected running time is $O(n \log n+k)$ where k is the number of intersection points, $0 \leq k \leq\binom{ n}{2}$.

6.2 Randomized Incremental Construction Algorithm

6.2.1 Vertical Decomposition

$S=\left\{e_{1}, \ldots, e_{n}\right\} \subseteq \Re^{d}$
Vertical Decomposition of $\mathbf{S}(V D(S))$

- From each endpoint of S or intersection point of 2 segments in S, draw a vertical segment until it hits another segment of S or to infinity.
- Partitions space $|V D(S)|=O(n+k)$ trapezoids.

Figure 6.1: Planar Subdivision Graph

Figure 6.2: Types of Trapezoids (tau signifies τ)

If e is one of 4 segments bounding τ, then e defines τ.
$N(e, S)=\{\tau \in V D(S) \mid e$ defines $\tau\}$
$\operatorname{deg}(e, S)=|N(e, S)|$
$I(e, S)_{e \notin S}=\{\tau \in V D(S) \mid e$ intersects $\tau\}$

6.2.2 RIC

Given a vertical decomposition, add another segment.

Figure 6.3: New Segment Added to Vertical Decomposition

6.2.3 Algorithm

$S_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$
$V D\left(S_{0}\right)=\Re^{2}$
for $i=1$ to n do
Compute $I\left(e_{i}, S_{i-1}\right)$
Delete these cells
Compute $N\left(e_{i}, S_{i-1} \cup e\right)$
Add these cells $\Rightarrow V D\left(S_{i}\right)$
endfor

Claim $1 V D\left(S_{i}\right)=V D\left(S_{i-1}\right)-I\left(e, S_{i-1}\right)+N\left(e, S_{i}\right)$
Find the cells (trapezoids) that intersect the new segment, modify them, and add any new cells.

6.2.4 Bookkeeping

Keep "conflict lists" similar to bookkeeping with RIC and conflict hulls. More specifically, for each segment, keep track of the trapezoids it defines and vice versa.

Maintain $I\left(e_{j}, S_{i}\right) \forall j>i$
Foreach $\tau \in V D\left(S_{i}\right), S_{\tau}=\left\{e_{j} \mid \tau \in I\left(e_{j}, S_{j}\right)\right\}$
Time spent bookkeeping:

$$
\sum_{\tau \in I\left(e, S_{i-1}\right)}\left|S_{\tau}\right|
$$

Now we need to look at the time spent creating/deleting cells, or just creating cells because deletion of cells is bounded by creation of cells.

6.3 Analysis

New cells created correspond to adjacent segments to that being inserted. So the number of cells created is $\operatorname{deg}\left(s_{i}, S_{i}\right)$ where s_{i} is a random element of S_{i}.

$$
\begin{aligned}
\frac{1}{\left|S_{i}\right|} \sum_{e \in S_{i}} \operatorname{deg}\left(e, S_{i}\right) & =\frac{1}{\left|S_{i}\right|} \cdot \frac{1}{i} \cdot 4 V D\left(S_{i}\right) \\
\text { ExpectedValue } & =\frac{1}{\binom{n}{i}} \sum_{S_{i} \in\binom{S}{i}} \frac{1}{i} \cdot 4\left|V D\left(S_{i}\right)\right| \\
& =\frac{4}{i} \cdot \frac{1}{\binom{n}{i}} \sum_{S_{i} \in\binom{S}{i}}\left|V D\left(S_{i}\right)\right| \\
\Phi_{i} & =\frac{1}{\binom{n}{i}} \sum_{S_{i} \in\binom{S}{i}}\left|V D\left(S_{i}\right)\right|
\end{aligned}
$$

$\Phi_{i}=$ Expected size of $V D$ of a subset of size i of S.

Claim $2 \Phi_{i}=O\left(i+k \cdot \frac{i^{2}}{n^{2}}\right)$

$$
\begin{aligned}
\Phi_{i} & =\frac{1}{\binom{n}{i}} \sum_{R \in\binom{S}{i}}|V D(R)| \\
& =O\left(\frac{1}{i}\left(i+k \cdot \frac{i^{2}}{n^{2}}\right)\right) \\
\sum_{i=1}^{n} O\left(1+k \cdot \frac{i^{2}}{n^{2}}\right) & =O(n+k)
\end{aligned}
$$

Time Spent in Bookkeeping:
$(e, \tau): e \notin S_{i}, \tau$ is a cell created in step i
$e \cap \tau \neq$ NULL
Probability $\operatorname{Pr}[\tau$ is created in step $i]=\frac{4}{i}$
Expected time spent in bookkeeping in step i :

$$
\frac{1}{\binom{n}{i}} \sum_{S_{i} \in\binom{S}{i}} \sum_{e \notin S_{i}} \frac{4}{i}\left|I\left(e, S_{i}\right)\right|
$$

$\left(S_{i} \rightarrow R\right)$

$$
\frac{1}{\binom{n}{i}} \sum_{R \in\binom{S}{i}} \frac{4}{i} \sum_{e \notin R}|V D(R)|-|V D(R \cup e)|+\operatorname{deg}(e, R \cup e)
$$

$|V D(R)|-|V D(R \cup e)|$ becomes a telescopic series; so ignore it

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{\binom{n}{i}} \sum_{R \in\binom{S}{i}} \frac{4}{i} \sum_{e \neq R} \operatorname{deg}(e, R \cup e) & =\frac{4}{i} \cdot \frac{1}{\binom{n}{i}} \sum_{R^{\prime} \in\binom{S}{i+1}} \sum_{e \in R^{\prime}} d e g\left(e, R^{\prime}\right) \\
& =\frac{4}{i} \cdot \frac{1}{\binom{n}{i}} \sum_{R^{\prime} \in\binom{S}{i+1}} 4\left|V D\left(R^{\prime}\right)\right| \\
& =\frac{16}{i} \cdot \frac{1}{\binom{n}{i}} \sum_{R^{\prime} \in\binom{S}{i+1}}\left|V D\left(R^{\prime}\right)\right| \\
\sum_{i=1}^{n} \frac{16(n-1)}{i(i+1)} \cdot \Phi_{i+1} & \leq \sum_{i=1}^{n} \frac{n}{i(i+1)}\left[(i+1)+k \frac{(i+1)^{2}}{n^{2}}\right] \\
& =\sum_{i=1}^{n} n\left[\frac{1}{i}+\frac{k}{n^{2}}\right] \\
& =O(n \log n+k)
\end{aligned}
$$

Theorem 1 Random Sampling Technique
Choose Random Sample R
$R \subseteq S$: random sample of size r $\tau \in V D(R)$
$w(\tau)$: number of segments in $S \backslash R$ that intersect τ

$$
E\left[\sum_{\tau \in V D(R)} w(\tau)^{P}\right] \leq c \cdot \Phi_{r} \cdot\left(\frac{n}{r}\right)^{P}
$$

Figure 6.4: Random points, expect n / r elements in segments

6.4 Other Applications

Figure 6.5: Shapes where VD is applicable

6.4.1 GIS

Elevation data collected: $M_{1}=\left(x, y, f_{1}(x, y)\right), f_{1}$: elevation Temperature data collected $M_{2}=\left(x, y, f_{2}(x, y)\right), f_{2}$: elevation

Figure 6.6: Shapes where VD is applicable

Do triangulation and piecewise interpolation.
Overlay maps. $M_{3}=(x, y, g(x, y)), g=f_{1} \bigoplus f_{2}$

6.4.2 Splines

This algorithm can also extend to splines as long as segments are monotone.

Figure 6.7: Splines - the first one monotone, the second not

6.5 Additional Information/Links

Boissonnat and Snoeyink discuss efficient algorithms using restricted predicates[1]. This algorithm works with both line segments and curves. This paper also discusses an algorithm for finding red/blue line and curve segment intersections, with the segments colored so that no 2 red and no 2 blue segments cross.

Hobby discusses a practical algorithm for segment intersection with finite precision output. [2] This paper is interesting because it summarizes the pros/cons of other algorithms.

Chazelle and Edelsbrunner present an optimal algorithm for finding line segment intersections in the plane [3]. This algorithm runs in $O(n \log n+k)$ time and uses at most $n+k$ storage. Amortized analysis is used to analyze the complexity of this algorithm.

References

[1] Jean-Daniel Boissonnat and Jack Snoeyink, Efficient algorithms for line and curve segment intersection using restricted predicates In Proceedings of the 15 th Annual ACM Symposium on Computational Geometry, 1999
[2] John D. Hobby, Practical Segment Intersection with Finite Precision Output In Technical Report 93/2-27, Bell Labs, 1993
[3] Bernard Chazelle and Herbert Edelsbrunner, An Optimal Algorithm for Intersecting Line Segments in the Plane In Journal of the Association for Computing Machinery, January 1992

