
CPS234 Computational Geometry September 20th, 2005

Lecture 7: Segment, Interval, Priority-Search Trees

Lecturer: Pankaj K. Agarwal Scribe: Mason F. Matthews

7.1 Segment Trees

7.1.1 Problem Statement

Suppose that we are given inputI, a set ofn non-intersecting segments inR2. A query is the triple(qx, qy, q′y)
representing the vertical line segment from(qx, qy) to (qx, q′y). We wish to return a list of the segments inI
that intersect with the query segment.

7.1.2 Data Structure

The segment tree, intially proposed in [1], is a two-level data structure used to efficiently solve the problem
given above. The primary structure is a binary treeT , and each node inT is built to contains a subset of the
segments inI. Each node also contains a link to a secondary data structure: a binary tree. This secondary
tree will be described shortly.

Let’s first gain an intuition for the primary data structure. Consider the input segments A through E given in
Figure7.1. If we project these segments down toR, given by the horizontal number line, then the endpoints
partitionR.

To build a segment tree, create one leaf node for each partition, and one leaf node for each endpoint. These
nodes are represented by squares in the figure. As each leaf node is built, all intervals that project to the
corresponding region ofR are added to the node. Next, join the nodes in pairs from the bottom up to form a
binary tree.

As each internal node is created, consider its two children. For all segments stored in both children, copy the
segment into the new internal node and remove it from the two children. See Figure7.1for an example of the
data structure once the internal nodes have been created and the segments have reached their final positions.

At query time, the tree is traversed from the root, and the path to a leaf node is determined byqx. All segment
names found at the nodes along this path are added to a list, and once the leaf node is reached, the list
contains all segments that intersect the vertical linex = qx. Unfortunately, this is a superset of the segments
intersected byq; some of them may pass above or belowq.

To winnow this list down, we use the secondary trees stored at each node. The right side of Figure7.2
provides an example of one of these trees, and the left side of the figure shows the corresponding region of

7-1

Lecture 7: September 20th, 2005 7-2

A

B

E

C

D

BEA

A A

BE E

C D

C CD

Figure 7.1:Constructing a Segment Tree

space. Here, the traversal has reached an internal nodeV containing the set{A,B,C}, and its descendents
span the region denoted by the dotted lines. WhileD andE are also in this region, they do not span the entire
region, and therefore do not appear inV . Since all input segments are non-intersecting, we know that the
relative ordering ofA, B, andC is fixed over the region. The secondary binary tree containing{A,B, C}
is indexed by this relative ordering. Two traversals in this tree can determine which of the segments are
intersected byq. The segmentE will be reported later as the query proceeds to a lower node in the primary
tree.

A

D

B

q

E

C A B C

Figure 7.2:Example Query and Secondary Data Structure for an Internal Node of Segment Tree

7.1.3 Time and Space Bounds

Naive construction time for a segment tree isO(n lg2 n). Methods exist for faster construction, and they can
reduce the time toO(n lg n). Worst-case query time isO(lg2 n + k), due to the fact that a secondary tree
needs to be traversed at each primary node, and the secondary trees can be of heightO(lg n).

The space required for this tree isO(n lg n). An input segment can be stored at multiple levels in the primary
tree, as shown in Figure7.1, but it can only appear at a given level twice. If it appeared more than twice, then

Lecture 7: September 20th, 2005 7-3

two of those nodes must share a parent, and the segment would have been moved to that parent. Thus, space
required for storing segments in the primary tree isO(n lg n). Adding the secondary trees does not increase
the space requirement by more than a constant factor.

As a side note, space and time complexity can be improved when queries are restricted to vertical lines. In
this case, only the primary data structure is required. The preprocessing time for this structure isO(n lg n),
and queries can be handled inO(lg n + k) time, as each step in the tree traversal requires constant time plus
the number of nodes reported.

7.1.4 Klee’s Measure

One useful application of segment trees has been in the computation of Klee’s measure. The one-dimensional
case of the problem can be phrased as follows: Given a set of intervals on the real line, how do we compute
the length of their union? Klee suggested aO(n lg n) bound using simple sorting, and later this was shown
to be optimal [3].

With the simple question tackled, the two-dimensional generalization then arose: given a set of axis-aligned
rectangular regions, how can we compute the area of their union? Bentley [1] devised an algorithm that
sweeps a vertical line from left to right. As the sweep line moves, a segment tree maintains the intersection
of the sweep line with the rectangles. Whenever the sweep line passes the beginning or the end of a rect-
angle, the segment tree is updated. A new interval can be added, an existing interval can be removed, or
merging/splitting operations can take place. At each of these points, a running total of area can be updated.
Since changes to an interval tree take place in logarithmic time, each update takes timeO(lg n). Since each
rectangle has two vertical edges, the total number of updates isO(n), and the total running time isO(n lg n).
Bentley’s algorithm is therefore optimal in two dimensions.

In higher dimensions, Bentley’s sweepline strategy can handle ad-dimensional problem by dividing it into
n (d − 1)-dimensional measure problems; it therefore acheives a running time in three-dimensional space
of O(n2 lg n). However, this can be improved upon. In 1991, Mark Overmars and Chee Yap [6] used a
data structure similar to kd-trees that contained two-dimensional boxes rather than intervals. Insertions and
deletions could be performed inO(

√
(n) lg n) time. Therefore, the overall running time of their algorithm is

O(n3/2 lg n). This is an open area of research, however, since the best known lower bound is stillO(n lg n).

7.2 Interval Trees

7.2.1 Problem Statement

Suppose that we are given inputI, a set ofn intervals inR. A query is a stabbing pointq which can be
expressed as a single scalar. We wish to return a list of the intervals inI that are stabbed byq.

7.2.2 Data Structure

Interval trees present an efficient solution to this problem, and were developed independently by Edelsbrunner
[2] and McCreight [4] in 1980.

Lecture 7: September 20th, 2005 7-4

An interval tree is built recursively from the root down by the following procedure:

• Presort all of the interval endpoints.

• Compute the median of all endpoints,xmid.

• Partition the set of segments into three disjoint sets:

Imid = {[xj , x
′
j] ∈ I|xj ≤ xmid ≤ x′j}

Ileft = {[xj , x
′
j] ∈ I|xj , x

′
j < xmid}

Iright = {[xj , x
′
j] ∈ I|xj , x

′
j > xmid}

• Create a root nodeV and store two lists in it:Lleft andLright. Lleft contains all of the items inImid

sorted by left endpoint, whileLright contains all of the items inImid sorted by right endpoint.

• Recur onIleft andIright. The result of the recursive call onIleft will becomeV ’s right child, and the
result of the call onIright will becomeV ’s left child.

A diagram showing the first few stages of this construction can be found in Figure7.3.

B

A D

E

G

F

C

xmid

I ={CDE}mid

I ={FG}rightI ={AB}left

Figure 7.3:Constructing an Interval Tree

7.2.3 Time and Space Bounds

The running time of the construction of the interval tree can be broken into five parts.

1. Presort all of the interval endpoints. This requiresO(n lg n) time.

2. Computexmid, which can be done in constant time once the endpoints are presorted.

Lecture 7: September 20th, 2005 7-5

3. ComputeImid, Ileft, Iright, which takesO(n) time, since the endpoints of each segment must be
considered before they can be assigned to a set.

4. CreateLleft andLright, which takesO(nmid lg nmid) time, wherenmid = card(Imid).

5. Recur onIleft andIright, beginning with step 2.

Consider the time taken by the recursive steps. The second step requires constant time for each recursive call.
Since the set size is divided in half at each level, the number of recursive calls isO(n), and the total time for
the second step isO(n).

The third step is linear in the number of items that are passed down during the recursion, and no segment can
be in more than oneIX set, so each level of recursion takes no more thanO(n) time. Over all levels, this
sums toO(n lg n).

Over all recursive calls, the fourth step takes
∑

O(nmid lg nmid) time. Since
∑

nmid = n, we know that∑
O(nmid lg nmid) ≤ O(n lg n).

Therefore, the total preprocessing time for an interval tree is:

O(n lg n) + O(n) + O(n lg n) + O(n lg n) = O(n lg n)

At query time, compareq with the root’sxmid. If q < xmid, then you know that the segments to be reported
are either inIleft or Imid. CheckImid first by walking through the root’sLleft array until you reach an
interval that does not includeq. All of the intervals that you examine will be stabbed byq except the last
one. Therefore, the time spent at that level isO(1 + kv), wherekv is the number of intervals reported at the
current node. To checkIleft, recur on the root’s left child.

If, instead,q > xmid, walk through the root’sLright list and recur on the right child.

Since the tree hasO(lg n) levels, and since
∑

kv = k, the total running time for the query isO(lg n + k).

The space required for this data structure isO(n) since each interval can only be stored twice in the tree:
once inLright and once in the correspondingLleft. The setsIright andIleft are used to build the tree, but
are not explicitly stored therein.

7.3 Priority Search Tree

7.3.1 Problem Statement

Suppose that we are given inputP , a set ofn points inR2. A query is given by the triple(qx, qy, q′y). The
goal is to return all of the points inP that are contained in the region(−∞, qx] × [qy, q′y]. An example of
such a query is shown in Figure7.4.

Lecture 7: September 20th, 2005 7-6

qx

q

q ’y

y

Figure 7.4:2-D Priority Search Example

7.3.2 Data Structure

A priority search tree [5] is a data structure which can be used to solve this problem efficiently. The data
strucuture at the heart of a priority search tree is the heap, an example of which is given in Figure7.5. A heap
is a binary tree structured such that the key of a parent is less than or equal to the key of its children. In many
applications, it is also required that the lower level of the heap is filled from the left to the right; this is not a
requirement here.

The procedure for creating a priority search tree (procedure namecreatePStree(P)) is as follows:

• Let xmin ∈ P be the point with the lowest x-coordinate.

• Let ymid ∈ P be the point with the median y-coordinate.

• Create a nodev with the value ofxmin as the key, and storeymid in the node as well.

• Let PL = {p ∈ P − {xmin}|py ≤ ymid}.
• Let PR = {p ∈ P − {xmin}|py > ymid}.
• v.left = createPStree(PL).

• v.right = createPStree(PR).

• Returnv.

The construction of such a tree is illustrated in Figure7.6. The letter given in the node represents thexmin

stored as the key, while the dotted line represents the mediany value stored in the node.

Lecture 7: September 20th, 2005 7-7

It is very important to note that this specific construction method allows the data structure to be indexed in
two different ways.First, the tree can be searched as a binary tree based ony-coordinates. However, it also
operates as a heap based onx-coordinate, and therefore each subtree is also a heap onx.

10

5 7 11 20

15 12

1

3

Figure 7.5:An Instance of a Heap

E

B

A

D

F

C

E

A

B

C

F

D

Figure 7.6:Constructing a Priority Search Tree

7.3.3 Time and Space Bounds

First let us consider the maximum depth of recursion in the construction of a priority search tree. Since we
divide the input set around the median in each recursive call, we know that the size halves at every level.
Therefore, the total depth of recursion isO(lg n). At each level of the recursion, it takes linear time to find
thexmin values, linear time to find theymid values, and linear time to createPL andPR. Therefore, with
O(n) time required at each level, the total preprocessing time isO(n lg n).

At query time, we are given the triple(qx, qy, q′y). A graphic describing this process is given in Figure7.7.
To respond to this query, we first perform two searches in the binary tree, one forqy and one forq′y. The
search forqy will follow the left-most path in the graphic, while the search forq′y will follow the right-most.
The grey subtrees, therefore, contain all the points which are in the range[qy, q′y].

Since each of those subtrees contain a heap indexed on the values ofxmin, thex values in the range(−∞, qx]
can be retrieved in timeO(1 + kv). Herekv is the number of items in the subtree rooted atv which are in

Lecture 7: September 20th, 2005 7-8

the range(−∞, qx]. Since there are at most2 ∗ lg n of these subtrees to be searched, the total query time is
O(lg n + k) wherek =

∑
kv.

Since each point is stored in the priority search tree once, the number of nodes is equal to the number of
points. Therefore, the total space required for this data structure isO(n).

vsplit

Figure 7.7:Priority Search Tree Query

References

[1] J.L. Bentley. Solutions to Klee’s rectangle problems. Technical report, Carnegie-Mellon Univ., Pitts-
burgh, PA, 1977

[2] Dynamic data structures for orthogonal intersection queries. Report F59, Inst. Informationsverarb.,
Tech. Univ. Graz, Graz, Austria, 1980

[3] Michael L. Fredman and Bruce W. Weide. On the Complexity of Computing the Measure of U[ai, bi].
Commun. ACM, 21:540-544, 1978.

[4] E.M. McCreight. Efficient algorithms for enumerating intersecting intervals and rectangles. Report
CSL-80-9, Xerox Palo Alto Res. Center, Palo Alto, CA, 1980.

[5] E.M. McCreight. Priority Search Trees.SIAM J. Comput., 14:257-276, 1985.

[6] M.H. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem.SIAM J. Comput.,
10:460-470, 1991.

