
CPS234 Computational Geometry September 22nd, 2005

Lecture 8: Orthogonal Range Searching

Lecturer: Pankaj K. Agarwal Scribe: Mason F. Matthews

8.1 Range Searching

The general problem of range searching is as follows: Given inputS, a set ofn points inRd, preprocess
the data into a data structure (if necessary) and answer a series of queries about the data. Queries include a
d-dimensional regionr and may be any of the following types:

• Emptiness: Doesr ∩ S = ∅? The output will be boolean.

• Reporting: Outputr ∩ S. The output will be a subset ofS.

• Counting: Compute|r ∩ S|. The output will be an integer.

Since solving the reporting problem provides an answer to the other two queries, this will be our focus. In the
broadest sense, these regions can have any form, but if it is assumed that region inclusion can be computed
in constant time, the naive algorithm of checking every point can be run inO(n) time for each query.

In the database community, these problems are known as “indexing” problems, and any preprocessing of the
input into a data structure is referred to as “building an index.”

8.2 Orthogonal Range Searching

Suppose instead that our queries are limited tod-dimensional axis-aligned rectangles, input as the cross-
product of 1-D intervals (i.e.r = [a1, b1] × [a2, b2] × ... × [ad, bd]). Queries of this form are referred to as
rectangular range queries, or more commonly in computational geometry asorthogonal range queries. With
this restriction in place, the naive query time is stillO(n), but now a wide range of data structures can be
used to speed the process.

While the topic of dynamic input sets is a rich area, insert and delete operations will not be covered in this
lecture.

8.2.1 1-Dimensional Case

Consider first the simple 1-dimensional version of this problem. Here, the inputS is a set of points on the
real line, and a query rectangle is simply an interval[a, b]. See an example of a query of this type in Figure

8-1



Lecture 8: September 22nd, 2005 8-2

8.1. The simple solution to this problem can be shown to be optimal with the decision tree model. To respond
to queries inO(lg n + k) time, simply preprocess the points by sorting them into an array. Preprocessing
requiresO(n lg n) time andO(n) space, but queries can be solved with the following method: first, perform
a binary search for the first item larger thana (O(lg n)); second, output every item in sequence until you
reach a point larger thanb (O(k)).

p

b 1

p
1 2

p
n

a 1

. . . . . . .

Figure 8.1:One-dimensional Range Search

8.2.2 2-Dimensional Case

Now suppose that our queries are 2-dimensional axis-aligned rectangles, input in the formr = [a1, b1] ×
[a2, b2]. Ideally, we would like to maintain a query time ofO(lg n + k). As mentioned earlier, an upper
bound on our performance is stillO(n). Two data structures are particularly useful in solving this problem:
kd-trees and range trees.

8.3 Kd-Trees

A kd-tree is a binary tree with nodes that represent rectangular regions ofRd [1]. Each node of the data
structure stores a single pointpv from S. An example of 2-dimensional space divided into regions by a
kd-tree can be found in Figure8.2. Intuitively, the construction algorithm begins by enclosing all points in
S with a rectangle, then dividing that rectangle in half in thex-direction. Each half is then divided in the
y-direction, and so forth, until there is only one point in each region.

p

p

p
4

7

12

x 0

x 1

Figure 8.2:Two-dimensional Kd-tree Construction



Lecture 8: September 22nd, 2005 8-3

8.3.1 Data Structure

Pseudocode used to store a set of points in ad-dimensional kd-tree is given below:

kdtree(S, i, d)
if S = emptyset, return null
p = point in S w/ median x_i-coordinate
create a node V
set p(V) = p
S_- = { q is an element in S | x_i(q) < x_i(p) }
S_+ = { q is an element in S | x_i(q) > x_i(p) }
left(V) = kdtree(S_-, (i+1) mod d, d)
right(V) = kdtree(S_+, (i+1) mod d, d)
return V

end

Note that the dimension in which the median is found changes at each recursive call. The kd-tree constructed
from Figure8.2can be found in Figure8.3.

p

p

p p

ppp

p

p p

p p

7

4 12

3 2

1 56

8 9

10 11

Figure 8.3:Two-dimensional Kd-tree

8.3.2 Queries

Before examining query pseudocode, let’s try to gain an intuition for a tree traversal.

At each node, one of three cases can occur, and examples of each are given in Figure8.4. In the first case,
the rectangle representing the current node,σV , is disjoint fromr. We will call these nodes “white.” In the
second case,σV ⊂ v. We will call nodes of this type “black.” The third case is more complicated; here, there
is less than total overlap, and the children of the current node will need to be searched recursively. We will
call these nodes “gray” nodes.

Claim 1 If a node is white or black, all of its children are white or black, respectively.

Claim 2 If a node is gray, any of its children can be of any type.

Pseudocode for ad-dimensional kd-tree query is given below. Note thatr is of the form[a1, b1]× [a2, b2]×
...× [ad, bd].



Lecture 8: September 22nd, 2005 8-4

r

r

r
Case (a) − White Case (b) − Black Case (c) − Gray

σv

σv

σv

Figure 8.4:Kd-tree Query Cases

query(r, V, i, d)
if V is null, return emptyset
if p(V) is an element in r, return p(V)
if a_i < x_i(p(V))

query(r, left(V), (i+1) mod d, d)
if b_i > x_i(p(V))

query(r, right(V), (i+1) mod d, d)
end

8.3.3 Time and Space Bounds

In the construction pseudocode given above, the time required to find the median isO(n). Since the two
recursive calls are on point sets half the size of the previous level, the preprocessing recurrence relation is
P (n) ≤ 2P (n/2) + O(n), and its solution isP (n) = O(n lg n).

The time required for a query is a bit more complicated, but can be managed by noticing two things:

Claim 3 Query time is proportional to the number of black nodes in a query plus the number of gray nodes.

Claim 4 The number of black nodes is bounded byk, the number of points in the query rectangle.

Since we know that the query time must include a factor ofk, it suffices to bound the number of gray nodes.
Consider the two rectanglesr andσV . If vertex V is a gray node, one of the edges ofr intersectsσV . We
can then ask how many nodesV2 are there such that a horizontal edge ofr intersectsσV2? Call this quantity
φ(n). If you consider the left side of Figure8.5, you can see that only two of the grandchildren intersect the
edge. Therefore, as you progress down the kd-tree, only the current node, the two children, and2/4 = 1/2
of the grandchildren can possibly be gray. Therefore, the query recurrence relation can be expressed as
φ(n) = 2φ(n/4) + 3. The solution to this relation isφ(n) = O(

√
n), so the total query time isO(

√
n + k).

In addition, since each node in the kd-tree contains exactly one point, it is clear that the space required for
this data structure isO(n).



Lecture 8: September 22nd, 2005 8-5

sigmav

edge of r

Figure 8.5:Gray Node Procedure

8.4 Range Trees

Since it has been shown that the expected query time for a kd-tree is better thanO(
√

n + k), it is natural to
ask whether a new data structure can offer us a superior worst-case bound. The answer is yes, though the
improved query time will increase the necessary storage space toO(n lg n), as will be shown. One such data
structure is a range tree.

8.4.1 Data Structure

A range tree is a two-level data structure. See Figure8.6for an example. The primary structure is a balanced
binary treeT ordered byx-coordinate such that each point inS is stored at a leaf node. At each internal
nodeV , SV represents the set of all points in the subtree rooted atV . The secondary data structure is an
arrayPV at each node which storesSV sorted byy-coordinate. A range tree can be created by joining points
containing nodes from the bottom-up, while also merging sortedPV lists at each level.

p p p p p p pp
1 2 3 4 5 6 7 8

T
. . . . . . . . . . . .

P
V

Figure 8.6:Range Tree Data Structure



Lecture 8: September 22nd, 2005 8-6

8.4.2 Time and Space Bounds

Preprocessing time for a range tree isO(n lg n). Creating the primary tree requires linear time, since the total
number of nodes to be created isO(n). Since we are merging sorted lists as we move upO(lg n) levels, the
time required to create the secondary structures isO(n lg n). Queries are performed by searching fora1 and
b1 in the primary data structure and checking thePV lists which fall in the correct ranges. See Figure8.7for
an example; nodes that fall “inside” the query paths (checked) are the ones that will be searched. Since at
most2 ∗ lg n PV lists are searched (each inO(lg n) time), the total time required for a query isO(lg2 n + k).
Since each point is stored once at each level, the total space required isO(n lg n).

The query time can be improved toO(lg n + k), which will be described in the next lecture.

Figure 8.7:Range Tree Query

8.5 Range Search and Nearest Neighbor

The problem of range search and nearest neighbor search are closely related. For instance, a kd-tree can be
used to efficiently find a target point’s (t’s) nearest neighbor inS. See Figure8.8 for an example of this
process [3].

Given the kd-tree constructed above, find a first approximation for the nearest neighbor by searching for the
leaf node which would contain the target point. Use the pointp contained therein as this approximation.p
may not be the nearest neighbor, but we do know that the nearest neighbor must lie at least as close, and is
therefore within the circle defined byt andp. We next back up to the parent of the current node. We then
check to see whether a closer point could exist in the parent node’s other child. If so, proceed down the tree
and see if the next point is closer. Recompute the circle if necessary. If a closer point could not exist inp’s
sibling, move up the tree and repeat.

It is clear from this description that at leastΩ(lg n) nodes will be inspected by this algorithm; at least one
leaf node will be examined. The number of nodes examined can also not exceedn. As it turns out, under
certain assumptions the expected time for finding the nearest neighbor isO(lg n). Calculation of the expected



Lecture 8: September 22nd, 2005 8-7

x 0

x 1

X

Figure 8.8:Kd-tree Nearest Neighbor Search

number of inspections is difficult because it depends on the expected distribution of the points in the kd-tree,
and in the distribution of the target points. The analysis can be found in [2].

References

[1] J.L. Bentley. Multidimensional divide and conquer.Communications of the ACM, 23(4):214-229, 1980.

[2] J.H. Friedman, J.L. Bentley, R.A. Finkel. An algorithm for finding best matches in logarithmic expected
time.ACM Transactions on Mathematical Software, 3(3):209-226, 1977.

[3] A. Moore. A tutorial on kd-trees. University of Cambridge Computer Laboratory Technical Report No.
209, 1991.


