
CPS234 Computational Geometry October 06, 2005

Lecture 12: Computing Voronoi diagrams
Lecturer: Pankaj K. Agarwal Scribe: Urmi Majumder

12.1 Introduction

In this lecture we’ll discuss how to compute a Voronoi diagram and this will inolve primarily two new
concepts:

• Lower Envelopes

• Duality

12.2 Lower Envelope

Suppose F = {f1, f2, . . . , fn} be a set of functions where each fi : Rd → R. Lower envelope of F [Figure
12.1] is defined as,

LF (x) = min1≤i≤nfi(x)

Similarly, we can define upper envelope of F as

UF (x) = max1≤i≤nfi(x)

The points in the envelope(lower or upper) where one switches from one function to another is called a
breakpoint[Figure 12.1]. For example in two dimensions when y i = f(xi), if we project these breakpoints
down onto the x-axis, we’ll end up with a partition of the x axis. Note that each partition corresponds to only
one function.

12.2.1 Minimization Diagrams

A concept related to lower envelopes is the concept of minimization diagrams. Formally, minimization dia-
gram is the projection of the graph of LF onto Rd[Figure 12.1]. For a bivariate function(d = 2), it is a planar
subdivision.
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Figure 12.1: Lower Envelope and Minimization Diagram
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Figure 12.2: Lower Envelope for linear functions

12.2.2 Linear Functions and Lower Envelopes

Let our function f from the previous section be linear. Thus,

f : xd+1 = a0 + a1x1 + . . . + adxd

Let hi be the halfspace lying below fi. In other words, we consider the halfspaces where

xd+1 ≤ a0 + a1x1 + . . . + adxd

Note that fi be a linear function ⇒ LF = ∂(∩n
i=1hi)[Figure 12.2]

When we project LF onto a plane we get a convex subdivision of the plane.
Let S = {p1, p2, . . . , pn} ⊆ R2. Let pi = {xi, yi}.

Now define a function
fi(x) = ||xpi||

or
fi(x, y) =

√
(x − xi)2 + (y − yi)2
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.
Define

gi(x, y) = f2
i (x, y) − x2 − y2

. Thus,

gi(x, y) = (x − xi)2 + (y − yi)2 − x2 − y2

= −2xxi − 2yyi + x2
i + y2

i

Note that gi(x, y) is a linear function. Let us denote the point with (x, y) coordinate as z.

Theorem 1 Voronoi Diagram of S or Vor(S) is the minimization diagram of G = {g1, g2, . . . , gn}

Proof: Suppose a point z ∈ R2 appears in a cell of the minimization diagram of G labeled i. Then,

gi(z) = min1≤j≤ngj(z)

⇒ gi(z) ≤ gj(z), ∀j

⇒ gi(z) + x2 + y2 ≤ gj(z) + x2 + y2, ∀j∀x∀y

⇒ fi(z) ≤ fj(z)

Complexity of Voronoi Diagram In two dimensions, the Voronoi Diagram has linear complexity while in
three dimensions it has quadratic complexity. In general, size of the Voronoi Diagram in d dimensions, is
O(n" d

2 #) where n is the number of sites. Note that instead of L2 metric, we could have used the more general
Lp

1 metric in defining fi(x, y). However, size complexity of the Voronoi Diagram for several metric is still
an open question.

12.2.3 Geometric Interpretation of Voronoi diagram as minimization diagram

So what does gi(z) means geometrically? We can interpret z = fi(x, y) as a cone rooted at the point pi.
When we consider z = f 2

i (x, y) instead, this cone turns into a paraboloid for each point p i. So for the whole
set S, we’ll have a set of paraboloids, each rooted at a p i, for pi ∈ S. Initially we have a two dimensional
plane P containing all the points in S. Recall that gi(x, y) = f2

i (x, y)−x2−y2. So to account for −(x2+y2),
we can take P and bend it so that it takes the form of an unit paraboloid z = −(x 2 +y2). Locate the point(say
qi) on this paraboloid which is vertically below p i, ∀i. Draw a tangent plane T (pi) at qi. Repeat this for all
i = 1 to n. Denote this set of tangent planes by H(S). Consider the convex polyhedron defined by the
intersections of all the positive half-spaces defined by the set of T (p i)s. If we project the edges and the
vertices of the polyhedron vertically upwards onto the xy plane we’ll get the Voronoi diagram of S[Figure
12.3].

1Lp metric for any two points a and b: dp(x, y) = (|ax − bx|p + |ay − by |p)
1
p
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Figure 12.3: Goemetric Interpretation of Voronoi diagram as minimization diagram

p p∗

l∗

Primal Plane Dual Plane

l : ax + by + 1 = 0

h : ax + by + 1 > 0

ax + by + 1 < 0

Figure 12.4: Example of Duality Transform
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12.3 Duality

12.3.1 Definition

Duality is a transform that maps a point to a line and a line to a point. Note that we’ll discuss duality in
two dimensions but it works for higher dimensions also. Also we’ll work with homogenous coordinates.
Recall that for a point p ∈ R2, with coordinates ( x

t , y
t ) then the homogenous coordinates for p is (x, y, t).

For simplicity we’ll take t = 1. So for example if a1x1 + a2x2 + a3x3 = 0 is the equation of a line l,
then by duality transform, the coordinates of the dual point p is (a 1, a2, a3). By homogenous coordinates
transformation, l : a1

a3
x1 + a2

a3
x2 + x3 = 1, p : (a1

a3
, a2

a3
). In general[Figure 12.4], if

l :< a, x >= 0 ⇔ l∗ : a

and
p : (a, b) ⇔ p∗ : ax + by + 1 = 0

12.3.2 Properties of Point Line Duality

Some of properties of duality transform are listed below:

1 Containment: If p ∈ l ⇔ l∗ ∈ p∗. For instance, if p is (α,β) and l is ax + by + 1 = 0, then
aα+ bβ + 1 = 0. Similarly, if l∗ : (a, b) and p∗ : αx + βy + 1 = 0, then aα+ bβ + 1 = 0.

2 Self Inverse:(p∗)∗ = p and (l∗)∗ = l

3 Order Reversing: Point p lies above/below line l in the primal plane iff line p ∗ lies below/above
point l∗ in the dual plane respectively. In terms of halfplane, if h : ax + by + 1 > 0 is the halfplane
defined by l containing the origin, and p ∈ h, then l ∗ has to lie in the halfspace h

′ of p∗ containing the
origin[Figure 12.4].

4 Intersection preserving Lines l1 and l2 intersect at point p iff line p∗ passes through points l∗1 and l∗2
in the dual plane[Figure 12.5].

5 Collinearity/coincidence Three points are collinear in the primal plane, iff their dual lines intersect in
a common point.

Observation The duality transform can also be applied to other objects than points and lines[ 1]. For in-
stance the dual s∗ of a line segment s = pq is the union of the duals of all the points on s. What we get is an
infinite set of lines. All the points on s are collinear, so all the dual lines pass through one point. Their union
forms a double wedge which is bounded by the duals of the endpoints of s. The lines dual to the endpoints
of s define two double wedges, a left-right wedge and a top-bottom wedge; s ∗ is the left-right wedge[Figure
12.6]. It also shows that a line l intersecting s, whose dual l∗ lies in s∗. This is because any line that intersects
s must have either p or q above it and the other point below it, so the dual of such a line lies in s ∗ by the order
preserving property of the dual transform. This oberservation will be fairly helpful in the following section.
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Figure 12.5: Line Intersection in Duality Transform
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Figure 12.6: Duality Transform applied to a line segment

12.3.3 Duality and Convex Hull

Suppose we have a set L of n lines, L = {l1, l2, . . . , ln}. Let hi be the positive halfplane bounded by l i. So
P = ∩n

i=1hi is a convex polygon. So p ∈ P ⇒ p ∈ hi, ∀i. Look at the dual of these lines. Each li maps to
a l∗i . Note that l∗i ∈ (p∗)+ if (p∗)+ is the positive halfplane bounded by p∗. Let us look at the convex hull of
L∗(conv(L∗)). Observe that, if p ∈ P , then p lies outside conv(L∗). In other words, p∗ ∩ conv(L∗) = ∅.
Let q be the intersection point of li and lj in P , then by property (4), q∗ is an edge of conv(L∗). In summary,
conv(L∗) is the dual of P [Figure 12.7]. Note that in three dimensions, a face of P maps to a vertex of
conv(L∗), an edge of P maps to an edge of conv(L∗) and a vertex of P maps to a face of conv(L∗).

Duality transform for unbounded polyhedron Let L be a set of lines, L = {l1, l2, . . . , ln} where li :
−2aix− y + a2

i = 0. Thus , l∗i is (− 2ai

a2
i
,− 1

a2
i
). This means that in the dual plane, all the points lie below the

x axis. However, note that if the convex hull does not contain the origin it will be unbounded.

Theorem 2 Let P be a set of points in the plane. The counterclockwise order of the points along the upper
(lower) convex hull of P , is equal to the left to right order of the sequence of lines on the lower (upper)
envelope of the dual P ∗ [2].

Proof: We will prove the result just for the upper hull and lower envelope, since the other case is symmetri-
cal. For simplicity, let us assume that no three points are collinear. Observe that a necessary and sufficient
condition for a pair of points pi and pi to form an edge on the upper convex hull is that the line e(ij) that
passes through both of these points has every other point in P strictly beneath it.
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Figure 12.7: Duality and convex hulls

Consider the dual lines p∗
i and p∗j . A necessary and sufficient condition that these lines are adjacent on

the lower envelope is that the dual point at which they meet, l ∗ij lies beneath all of the other dual lines in p∗.
The order reversing condition of duality assures us that the primal condition occurs if and only if the dual
condition occurs. Therefore, the sequence of edges on the upper convex hull is identical to the sequence of
vertices along the lower envelope. As we move counterclockwise along the upper hull observe that the slopes
of the edges increase monotonically. Since the slope of a line in the primal plane is the a coordinate of the
dual point, it follows that as we move counterclockwise along the upper hull, we visit the lower envelope
from left to right.
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