
CPS234 Computational Geometry 1 November 2005

Lecture 18: Random Sampling

Lecturer: Pankaj K. Agarwal Scribe: Amber Stillings

18.1 Lecture Summary

This lecture will show motivating reasons for using random sampling. An algorithm for finding the median
of numbers using random sampling is shown. Geometric examples of random sampling are also shown.

Random sampling methods sacrifice accuracy in favor of better space and time requirements, and methods
of bounding error are described, includingε- nets,ε-approximations, and discrepancy. VC-dimension is also
described and shown as a tool for bounding error.

18.2 Toy Example: Finding the Median of Numbers

X = x1, . . . , xn ⊆ <
Goal: Compute the median ofX
Median of medians takes linear time. Described here is another linear time algorithm, with a better constant
than median of medians.

18.2.1 Random Sampling Median Algorithm

1) Choose
√

n numbers at random
2) Sort these

√
n numbers.Y = xi1 < xi2 < . . . < xik wherek =

√
n

3) LetX− be the elements of rankk/2− 5 in Y
Let X+ be the elements of rankk/2 + 5 in Y

4) rk(x): rank ofx in X
Z = x|rk(X−) < rk(x) < rk(X+)

5) if |Z| ≥ c · √n or ((rk(X−) < n/2 < rk(X+) not true) then go to step 1
6) Compute the element of rankn/2− rk(X−) in Z
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18.3 Geometry Examples

18.3.1 Range Searching

Figure 18.1: Orthogonal Range Searching: Points and Query Rectangle

Count points in query rectangle. WithO(n log n) space, this can be done inO(log n) query time.

Some applications have too much data though (O(n log n) space is unreasonable). Instead, a random subset
is stored. A correct answer cannot be expected. Instead, an approximation is obtained.

B: words of storage
S: Set ofn points in<2

Store a random subsetN ⊆ S of B points.

r: query rectangle
Compute|r ∩N |
Return|r ∩N | · |S||N |

18.3.2 Query Segments

Query Segment

Figure 18.2: Input and Query Segments

Does the query segment intersect any of the input segments? This problem relates to motion planning in AI
(Probabilistic Road Maps). A tradeoff is made. Accuracy is sacrificed in order to improve speed.
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Some mistakes are made, especially if the query intersects few segments (ie, the query segment intersects
only 1 segment and that segment is not in the sample being stored).

18.4 Statistical Analysis

X: finite set ofn objects∈ <2

R: a set of subsets ofX, R ⊆ 2|X|

R is called ranges or hyperedges.
Σ = (X,R): set system, hypergraph, range space

18.4.1 RangesR1

R1 = {X ∩ γ|γ is a halfplane}

Query Halfplane

Figure 18.3: Points and Query Halfplane

|R1| ≤ 2
(
n
2

)

Figure 18.4: One Dimensional example ofR1, where|R1| = 2n

H = (X, R1)
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18.4.2 RangesR2

R2 = {X ∩ ρ|ρ is an orthogonal rectangle}
|R2| = O(n4), R = (X,R2)

18.4.3 RangesR3

R3 = {X ∩ π|π is a convex polygon}
|R3| ≤ 2n

Figure 18.5: Points on a circle illustrate how|R3| is exponential

Π = (X, R3)

18.4.4 RangesR4

χ: set ofn lines in<2

R4 = {{l ∈ χ|l intersectse}|e is a segment}

Query
Segment

Figure 18.6: Example of a range inR4. If the endpoints of segments are in the same face, they intersect the
same lines. There aren4 pairs of segments.

|R4| = O(n4)
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18.5 ε-nets,ε-approximations, discrepancy, and VC-Dimension

Definition 1 Σ = (X,R), 0 ≤ ε ≤ 1
N ⊆ X is anε-net if∀r ∈ R, |r| ≥ ε|X| ⇒ r ∩N 6= ∅

ε-nets are like hitting sets.

Definition 2 Σ = (X,R), 0 ≤ ε ≤ 1
N ⊆ X is anε-approximation if∀r ∈ R,

∣∣∣ |r||X| − r∩N |
|N |

∣∣∣ < ε

ε-approximations are stronger thanε-nets.

Definition 3 Σ = (X,R)
χ : X → {−1, 1}
disc(r) = |∑x∈r χ(x)|
disc(Σ, χ) = maxr∈Rdisc(r)
disc(Σ) = minχdisc(Σ, χ)

Discrepancy looks for inbalance. If the set has a small discrepancy, this means the set was balanced, and
approximately half the points can be removed from the set (ie, get rid of all -1 points and use only +1 points).

How can you color the points (mark them as either -1 or 1) so that for all possible halfplanes,#(−1) ≈
#(+1)?

Query Halfplane

Universe

Figure 18.7: If the discrepancy is small, the number of positive and negative points in the halfplane is
approximately equal.

Theorem 1 disc(H) = Θ(n
1
4 )

disc(R2) = θ(log n)
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This means that there exists a coloration so that#(−1) = O(n
1
4 ) ·#(+1) or vice versa.

After removing half the points, (say, the +1 points), you can recurse to get the total number of points desired.

18.5.1 VC-Dimension

Σ = (X,R)
Y ⊆ X
RY = {r ∩ Y |r ∈ R}
ΣY = (Y,RY )
Y is shattered byΣ if |ΣY | = 2|Y |

Definition 4 V CDim(Σ): maximum size of a subsetY ⊆ X that can be shattered byΣ.

3 points can be shattered
        by halfplanes

OR

There are 2 possible configurations
of 4 points.  The circled points show 
combinations that cannot be shattered
by halplanes.  Therefore, 4 points cannot 

be shattered by halfplanes.

Figure 18.8: 3 points can be shattered by halfplanes. 4 cannot.

V CDim(H) = 3
V CDim(Σ) = ∞ if the subsets of all sizes can be shattered.
V CDim(Π) = ∞

Claim 1 V CDim(Σ) = d, |X| = n then

|R| ≤ ∑d
i=0

(
n
i

)
= O(nd)

Theorem 2 Σ = (X, R), 0 < ε < 1, V CDim(Σ) = d
A random subsetN ⊆ X of size
8d
ε (ln( 1

ε ) + ln( 1
δ ))

is anε-net ofΣ with probability≥ 1− δ.
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Theorem 3 Σ = (X, R), 0 < ε < 1, V CDim(Σ) = d
A random subsetN ⊆ X of size
8d
ε2 (ln( 1

ε ) + ln( 1
δ ))

is anε-approximation ofΣ with probability≥ 1− δ.

There exists anε-approximation of sizeΘ(( 1
ε )

2d
d+1 ).

Next class we will talk about applications ofε-nets and a sketch of the proofs for these claims and theorems
will be given.


