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BACKGROUND : RANGE SEARCHING, a database-oriented view 
 
Range searching is the side of geometry science in which a set of items is analyzed to determine the subset that 
belong to a given “range”. In other words, we are given as an input a set of elements with certain properties, and we 
are also given a “range” of properties. So, our output is expected to be “the set of elements whose properties exist in 
the given range”. In mathematical notation, we have: 
 
 
INPUT: 
P : {P0, P1, P2,.. , Pn} a set of elements with given properties (ex. weights..etc) 
Q : a range of properties (ex. Weights between x and y) 
 
OUTPUT: 
The set of elements that belong in the “intersection” of P and Q. 
 
 
Database queries happen to be a major application in which theories of range searching are applied. Let’s take an 
example of a database query, and interpret it in geometrical form: 
 
Assume we have a database for students’ records, in which we keep every student’s ID, name, number of completed 
hours, and the cumulative GPA. We now would like to apply the following SQL query to the database: 
 

SQL> SELECT ID,NAME FROM STUDENTS WHERE HOURS BETWEEN 75 AND 90 AND GPA 
BETWEEN 2.5 AND 3.0 

 
 

 
Figure.1: Range searching for a 2-D query 
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So this query above will give us the ID and name of every student whose GPA lies in the range [2.5,3.0] AND who has 
successfully completed hours in the range [75,90]. 
 
We notice that the query above is based on two elements: GPA and HOURS. So when we try to interpret the query in 
geometrical form, it will have two dimensions: the GPA would represent one dimension of the problem, and the 
HOURS will form the other dimension. The solution will be simply the area formed by the intersection of the two 
ranges generated from each dimension. 
 
Similarly, database queries with a single element, like: 

 
SQL> SELECT ID,NAME FROM STUDENTS WHERE GPA BETWEEN 2.7 AND 

3.3 
 

can be represented in a one-dimensional geometrical form. Also, database queries with more elements (3, 4 and 
more) will be interpreted in higher-dimension geometrical form. I will go over some of the data structures used to solve 
range searching queries of different dimensions. 
 
 
 
1.  SOLVING 1-D RANGE SEARCHING QUERIES 
 
In order to solve a given query against some input, the set of data has to be represented in some form of data 
structure. We have mentioned that database queries with a single element can be interpreted in a one-dimensional 
geometrical form, and that will be represented on a balanced binary search tree. 
 
 
1.1 USING BINARY SEARCH TREES 
 
Let’s look at the example mentioned above once again: 
 

SQL> SELECT ID,NAME FROM STUDENTS WHERE GPA BETWEEN 2.7 AND 
3.3 

 

 
Figure.2: Range searching using binary search tree 

 
 
 

Let’s assume that the STUDENTS table has a number of students whose GPA’s range between [0.0, 4.0]. So we will 
take these GPA values and arrange them in a balanced binary tree, which will be used later on to determine the 
location of both ends of the query range, and report all points in between them. The following diagram shows the 
entire tree of GPA’s in the students’ database: 
 
The algorithm for determining both ends of the query (2.7 and 3.3 in this case) runs as follows: 
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1. Start from the root of the tree, and look for a node that has a value in between both ends, call it Vspl i t. 
2. If the value in the root is NOT in the range, it can not be used as Vspl it, so either move right – in case the root’s 

value is less than the smaller end of the range, or move left – in case it’s greater than the larger end of the 
range. We move until we encounter a value that lies in the range. 

3. Whenever we encounter the node that is suitable for Vspl i t, then its right sub-tree will contain the greater end 
of the range. Its left sub-tree will as well have the smaller end of the range. 

 
So, by applying the algorithm to the tree shown in Figure.2, we start with the root, which has the value 2.4. Because 
2.4 does not lie in the range of [2.7, 3.3], then we move to the right since 2.7 is greater than 2.4. Now, with 3.1 in 
hand, we know 3.1 lies in the range [2.7, 3.3], so we take it as Vspl i t. We investigate both sub-trees of 3.1 to find both 
ends. From the left side, we find 2.7, which is in the range – but it’s the lower end, so we stop moving to the left at this 
point, we, instead, check the right sub-tree of 2.7. Actually, we can blindly include the whole right sub-tree of 2.7 
since it will only have elements whose values will be greater than 2.7 and less than 3.1. Now we are done with looking 
up the lower end of the range, we proceed with the higher end. We go to the right child of 3.1, it’s 3.6, so we can’t 
proceed with its right sub-tree. As a result, we go to its left sub-tree, which is only 3.2, and that is our higher end. The 
white nodes in the graph represent nodes our algorithm never visits. Light-green nodes are nodes we visit but we 
don’t include in our result because they don’t lie in the range. Finally, nodes in aqua color are the visited nodes that 
are in the range. 
 
 
1.1.1 SPACE AND TIME ANALYSIS OF BST 
 
Because every single element in the database gets represented as a node in the balanced binary search tree, our 
algorithm has space requirement of O(n).  
 
On the other hand, the time needed to construct the tree – and any balanced BST - is going to be O(n log(n)). The 
time needed to run the query is going to be a function of the number of reported items and (log n) since we go 
around the reported items in a tree of height (log n). So the query time is O(k + log n), where k is the number of 
reported elements. 
 
 
 
2.  SOLVING 2-D RANGE SEARCHING QUERIES 
 
We have seen, in the previous section, how to store a given database into a data structure to answer certain queries 
with a single element – which forms 1-D range searching. In this section, we will look at data structures used to answer 
queries with two elements, which makes the 2-D range searching. 
 
Database queries that tackle two elements, total number of credit hours and the cumulative GPA, for example, cannot 
use the 1-D binary search tree we went over in the previous section, simply because we need to come up with a data 
structure that organizes points with respect to both query elements. 
 
 
2.1 KD-TREES 
 
KD-trees is a simple and convenient algorithm for arranging points with respect to two distinguished properties into a 
single tree, which makes searching much simpler. It, however, is built on the assumption that no two points share the 
same property. In simple words, if we plot these points on a graph with two axes x and y – representing the two 
properties -, then no two points have the same x or y coordinates. When dealing with databases, this limitation is a bit 
un-realistic. As an example, in a students’ record database, having more than one student with 75 of completed credit 
hours is expected. 
 
The KD-tree algorithm works as follows: We start with a set of points, each has its x and y coordinates. We first draw a 
vertical line L1 that splits our set of points into two sets. The cutting line passes through a point we choose, and the 
number of points in every set is preferred to be equal as much as possible. In the next step, each set gets split into 
two sets with equal number of points, using a horizontal line this time, L2 and L3. After that, we split the four sets using 
vertical lines, and then horizontal lines, and so on until all points get passed through.  
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Now having covered all points, we can start building the KD-tree. In the first step, there was only a single line we drew, 
L1 – so that line gets represented in a node that will be the root of the tree. In the second step we drew two lines, L2 
and L3 – and they will be the children of the root node. We continue the same way with lines that were drawn in the 
step, get put in the same level of the tree. As you can see, odd levels will have vertical lines and even levels will have 
horizontal ones. 
 

 
Figure.3: Constructing a KD-Tree 

 
 
 
So let us assume that after building the KD-tree, we were given the query shown in green box in Figure 3. Since the 
query asks for points that are located to the right of L1 , the answer for the query will be located in the right sub-tree of 
the root L1 . 
 
 
2.1.1 SPACE AND TIME ANALYSIS OF KD-TREES 
 
Every point gets a line passing through it, which means every point will be represented with a node in the tree. So the 
space is going to be O(n). Constructing the tree, as expected, is going to be of order O(n log(n)). 
 
To answer the query using KD-tree, it will take us time in the order of O(sqrt(n) + k), where k is the output. 
 
 
2.2 RANGE TREES 
 
“Range trees” is another data structure used for 2-D range searching. It basically works as follows: the first element of 
the query is considered at this time, and for that a binary search tree gets implemented exactly the same way it is done 
for the 1-D binary search tree algorithm. Now we have a binary search tree for the first element of the query, so when 
we are given a query with two elements, we start doing our search using only the first element. We come up with the 
sub-tree that has the nodes in the range of the first element of the query, rooted by Vspl i t. From this point, we 
implement the associated tree, Tassoc , which holds the properties of the second element. 
 
Let’s use our original example here, the GPA and HOURS: 
 

SQL> SELECT ID,NAME FROM STUDENTS WHERE HOURS BETWEEN 75 
AND 90 AND GPA BETWEEN 2.5 AND 3.0 
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Figure.4: associating range search trees 

 
 

To solve this query using Range Trees, a binary search tree that holds the values of all students’ HOURS will be 
implemented first. A search will be applied to it exactly the same way we did our 1-D search in section 1, and Vspl i t will 
be identified. Now we have a sub-tree under which we have all the students who has completed hours between 75 
and 90. The next step will be building a second binary search tree that is associated with this tree, and it will hold 
values of GPA’s associated with every node in our current sub-tree. After that all we need to do is to report the points 
whose properties match the elements of the query. 
 
 
2.2.1 SPACE AND TIME ANALYSIS OF RANGE TREES 
 
As you have noticed, the nodes that are in the sub-tree of Vspl i t will be represented “again” in the other, associated 
tree. That means the storage will be more than O(n) but less than O(2n) since not necessarily all nodes will be there 
on the associated tree. The space requirement for a Range Tree is O(n log(n)). The time needed to construct the tree 
is also O(n log(n)). 
 
The time it takes to answer a query using Range Tree as a data structure is going to be the summation of multiple 
O(log(n)), which turns out to be in the order of O(log2(n) + k), where k is the number of reported points. 
 
 
 
3.  SOLVING RANGE SEARCHING QUERIES IN HIGHER DIMENSION 
 
Let’s look at this query: 
 

SQL> SELECT ID,NAME FROM STUDENTS WHERE HOURS BETWEEN 75 
AND 90 AND GPA BETWEEN 2.5 AND 3.0 AND MAJOR BETWEEN 23 
AND 25 

 
Let’s assume that the values 23, 24, and 25 for the field MAJOR represent Computer Science, Computer 
Engineering, and Systems Engineering. So our query is looking for CS, COE and SE students who have completed 
between 75 and 90 credit hours, and their GPA’s are between 2.5 and 3.0. This query is obviously composed of 
three elements, making it a range searching problem in 3-D. 
 
3.1 APPLYING RANGE TREES IN 3-D AND HIGHER 
 
Let’s think about using range trees as a data structure for solving this 3-D query. We can first implement a binary 
search tree for the first element of the query, the HOURS, and narrow it down to the sub-tree that has our needed 
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range. From there we can come up with the associated tree that represents the second element, the GPA, and we 
may also need to narrow it down to the needed ranged. Finally, we can also come up with the last associated tree for 
the last element, the MAJOR, and also narrow it down to match the range our query is looking for.  
 
 

 
Figure.5: Using range trees in 3-D queries 

 
 
Figure.5 shows the three range trees used for solving this example. So starting with the lower tree, which shows the 
HOURS values, we extract our sub-tree that has the range of hours we look for. Then we associate it with the GPA 
tree, and extract the values within the range of GPA we want. In the last step, we associate the GPA sub-tree we 
extracted with the MAJOR sub-tree. At the end, as you can see from the figure, we will have 3 students whose 
properties match the properties asked for by the query. 
 
As a result, we could come to the conclusion that the Range Trees data structure is very much applicable for solving 
queries of 3-D and higher. 
 
 
3.1.2 SPACE AND TIME ANALYSIS OF RANGE TREES IN 3-D AND HIGHER 
 
The intuition is the same for range trees in higher dimension as it is in 2-D. Range trees in 3-D and higher dimensions 
require O(n logn-1(n)) storage. They can as well be constructed in time proportional to O(n logn-1(n)), and the running 
time required by a query is O(logdn + k), where k is the number of points reported. 
 
 
 
CONCLUSION 
 
Database queries form a very interesting range searching problem. In this short paper, we have gone through the 
intuition of looking at these queries as 1-D, 2-D and higher dimensional graphs. This technique has simplified the 
process of narrowing down the input set of items, to the point at which we get the right answer for the given query. 
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