A Survey of Motion Planning for
Self-Reconfigurable Robots

Sam Slee

December 8, 2005

Abstract

Self-Reconfigurable robots are complex distributed systems composed
of multiple modular robotic units. These units can rearrange to form
different structures that fit the specific tasks that face the robot. The
unique and complex nature of self-reconfigurable robots has lead to a
challenging subset of motion-planning problems. In this paper several
types of reconfigurable robots are described and the current algorithmic
designs for those robots are surveyed.

1 Introduction

The concept of a collection of simple structures combining to form something
much more complex and versatile is utilized throughout nature. Modular self-
reconfigurable robots implement this concept by having a collection of simple
robotic modules that can attach and detach from each other to form structures
that best meet the challenges of the robot’s current environment. Over the
past decade the intrigue of such a versatile design has caused the field of self-
reconfiguring robotics to grow in popularity.

A number of research groups have now developed competing physical imple-
mentations and algorithmic control designs. The common scenario where such
robots are cited as being useful is in search-and-rescue missions. A versatile
self-configuring robot would seem to be best-suited to traversing the unknown
environment of collapsed buildings or other possible rescue environments. Some
researchers also see wide-ranging use for these robots in sea or space exploration,
or even in more common every-day tasks.

However, to fulfill the potential for truly versatile robotics, the complicated
challenge of intelligently managing a large collection of independent modules
must be overcome. Control algorithms for self-reconfigurable robots require a
unique perspective on motion planning algorithms. While basic robot motion
planning focuses only on finding collision-free paths through a robot’s environ-



ment, now a multitude of independent units must be handled. The motion
planning problems encountered fall into 3 main categories:

e Basic path planning: The common task of computing collision-free
paths for a robot’s movement through its environment.

e Reconfiguration: Algorithms that control how a collection of indepen-
dent modules can rearrange to form different larger structures.

e Locomotion: How the collection of modules can generate movement
through their environment.

In addition to handling each of these 3 main types of problems, complications
can also arise as the different problem types interact. Locomotion is obviously
restricted by the robotic structures that are possible by self-reconfiguration and
the abilities of those structures. Self-reconfiguration is potentially limited by the
space of the environment in which the robot modules are placed. Altogether,
self-reconfigurable robots present a distinct and challenging set of motion plan-
ning problems.

In the following sections a variety of different forms of self-reconfigurable
robots and the problems facing them will be detailed. Section 2 notes some
of the categories of reconfigurable robots and the characteristics that set them
apart. Section 3 more carefully defines the main problems of reconfiguration and
locomotion for these systems. Sections 4, 5, and 6 go into depth about some of
the notable reconfiguration planning strategies that have been employed to date.
Section 7 describes locomotion planning algorithms, encompassing solutions for
each of the major categories of robotic systems covered. Section 8 then addresses
some of the additional challenges facing this unusual robotic field, covering
those that do not strictly fit into the categories of locomotion or reconfiguration
motion planning. Finally, Section 9 concludes with a summary of what has been
covered and some final thoughts about the field of self-reconfigurable robots.

2 Reconfiguration Classes

For reconfiguration planning, a “configuration” refers to a particular arrange-
ment of connectivity between the independent modules [1]. The “reconfiguration
space” is then the set of such configurations that a given collection of modules
may form. Self-reconfigurable robots may transition between such configura-
tions by a series of atomic movements which Yim et. al. denote as rmoves [1].
Exactly what comprises such an atomic move depends on the type of the robot
implementation.

In addition to the unique motion planning challenges presented by self-
reconfigurable robots the problem is further complicated by the varying hard-
ware implementations used for the independent modules. Depending on the



hardware design used, planning algorithms largely fall into 3 different reconfig-
uration classes: mobile reconfiguration, substrate reconfiguration, and closed-
chain reconfiguration. Only self-reconfigurable robot designs are covered, as sys-
tems requiring outside intervention for reconfiguration lose many of the unique
abilities and design challenges that accompany independent systems.

Substrate Reconfiguration Substrate reconfiguration designs seem to be
the most popular choice in the field. Robots in this category are composed of
modules that can only attach at discrete locations on a lattice formed by other
modules in the collection. Exact paths are then given for a module to tran-
sition from one location on the lattice to another. Lattices with modules “in
transition” are not labeled as configurations [1]. Thus, an rmove for this cat-
egory involves a module detaching from the lattice, traveling along the surface
of the lattice, then reattaching at a new location. The methods by which this is
achieved varies with different implementations. Designs range from hexagonal
2D modules that seem to roll around the lattice [3], to rhombic dodecahedron
3D modules [2], to “molecule” designs with two joined atoms that walk along
the lattice structure [4], to expanding cube designs that push or pull other cubes
through the lattice [5,6].

Mobile Reconfiguration This type of hardware implementation consists of
modules that can move independently through their environment. An rmowve
for this category would then involve a module detaching from the collection,
moving through the environment to a new location outside the collection, then
reattaching at that new location. These movements are in addition to any walk-
ing or climbing along the structure formed by the other modules as was done for
substrate reconfiguration. This allows for a greater range of possible reconfigu-
ration algorithms as modules are not restricted to always being fully connected.
However this design does place a greater burden on the hardware implementa-
tion as each module must be self-reliant for mobility through the environment
and for power. As a result some work has been done on this concept [13] but
other designs have been more popular.

Closed-chain Reconfiguration This category of self-reconfigurable robots
deviates from the lattice-like structures that were common to the previous two
types. Here robot systems are composed of open or closed kinematic chains of
modules. These chains then attach at common points to form complex chains
or loops. When making a single chain, the visual image of the robot would
be similar to a snake. The bending ability of individual modules can result in
snake-like movements such as making sinusoidal waves for locomotion. One of
the most notable implementations of this design [7] has had several demonstra-
tions of locomotion.

An rmove for this class of self-reconfigurable robot would involve a single
attach or detach operation as well as possible motion within any of the mod-
ules’ degrees of freedom. This design category is unique because it places more



emphasis on the motion of attached modules swinging entire chains of other
modules while the other categories largely focused on more local movements
involving a couple of modules. This shift in design creates opportunities for
different motion planning and reconfiguration algorithms, but also necessitates
stricter hardware requirements. Individual modules must now be strong enough
to perform motions while lifting the weight of chains of other modules.

Homogenous vs. Heterogenous Most of the systems in the categories above
make the common assumption that the modules are identical, making for a ho-
mogenous system. Homogenous systems of modules have also been called meta-
morphic robotic systems [3]. Such systems have the obvious advantage that
modules are interchangeable, greatly simplifying algorithm design. When com-
puting a solution to a reconfiguration problem, it is not necessary to get specific
modules to specific locations. Conditions are relaxed so that it is sufficient for
any module to fill the specified locations.

There are, however, strong arguments for a heterogenous style of reconfig-
urable robot. The arguments given in [18] note that certain necessary sensing
and processing parts for robots are likely to be too costly to include in every in-
dividual module. In addressing their concerns it is possible that all homogenous
designs will at least have to make special allowances for expensive, special-
purpose parts that sometimes may need to be included. However, the majority
of hardware designs and algorithmic planning in the field is for homogenous
designs or close approximations (very few module types or one uniform type
and few non-uniform additional pieces). So, this survey focuses on homogenous
systems.

3 Planning Problem Types

The Reconfiguration Planning Problem The general case reconfiguration
problem is that of taking modules in one configuration and rearranging them
into another configuration using atomic module movements within the restric-
tions of the physical module implementation.

For simulations or for the creation of generic reconfiguration algorithms real-
world concerns are often abstracted away. When addressed, physical implemen-
tation considerations include gravity - will certain movements cause the robot
to tip over, or to fall off a ledge - and collision avoidance. There is concern for
collisions both with the environment and with other modules within the robot
collection itself. Finally, when considering this problem there is also a question
of what constitutes optimal behavior.

Bounds on the number of atomic movements are sought for most algorithms
that are designed, but the proper context for such bounds is still unclear. Re-
strictions on what is possible differ depending on whether algorithms are cen-



tralized or distributed, and which category of modular design is being evaluated.
Finally, physical concerns such as energy exerted by modules and time elapsed
for all operations should be considered for system implementations. The algo-
rithms described later in this paper will focus largely on abstractions without
real-world concerns.

The Locomotion Planning Problem Generating motion of the collection
of modules through its environment using atomic module movements within the
restrictions of the physical implementation.

While certainly a necessary goal for any real-world robot, success for this
question is still harder to define. While algorithmic solutions and physical im-
plementations have been produced for this problem, the success of such designs
in real-world settings is largely untested.

4 Substrate Reconfiguration Motion Planning

The substrate category of modular robots has seen the most work on recon-
figuration planning. Initially, planning algorithms focused on centralized al-
gorithms such as those seen in [12]. However, realizing the promise of very
versatile robotic systems seems to require a large number of individual modules
to comprise the reconfigurable system. Since distributed algorithms are better-
suited to control such systems more recent work has focused on these algorithms.

Due to the complex nature of the problem, many heuristic algorithms and
even some Artificial Intelligence techniques such as simulated annealing have
been proposed. The difficulty is that the number of possible configurations
grows exponentially with the number of atomic module units included in the
robot. These configurations can be represented by a graph according to their
connectivity arrangement. Correspondingly, optimal reconfiguration planning
has a relation to the shortest path problem on a graph with exponential nodes.

Hexegonal metamorphic robots One group, Walter et. al. [9] has mostly
concentrated on algorithmic designs for two dimensional hexagonal modules. In
this system the modules have the ability to “roll” along the lattice structure
formed by other modules. A module is aware of neighboring modules on any
of 6 sides by touch sensors as well as being aware of its own orientation (which
sides are facing which directions). Since the hexagonal structure of the modules
forms a coordinate system, modules are also assumed to know their coordinate
location in the arrangement.

The main reconfiguration problem addressed is to take an initial straight
chain of hexagonal modules or cells and reconfigure those modules into a goal
configuration that meets a stated admissibility condition. The researchers ad-
dress this with a two stage algorithm. The first step is a centralized planning



stage to determine the feasibility of the reconfiguration task and — passing that
test — the final target coordinates for all modules in the system. This is decided
by creating a directed graph towards and through the target cells in the goal
configuration area. Since modules need to traverse along backbone structures
created by other modules, the algorithm focuses on first finding a “substrate
path” that will first be filled and evenly divide the goal area. When completed
modules will be able to traverse both sides of this substrate path, thus reducing
the time to complete the reconfiguration. Using the directed graph construction
all possible substrate paths are considered and weighted according to a heuristic
function. The substrate path with lowest weight is deemed best and chosen. All
coordinate positions in the target configuration are then assigned rankings such
that locations along the substrate path will be filled first, then positions deepest
into the target configuration (hardest to reach), etc. These locations are then
carefully assigned to module cells in the initial straight line configuration.

The second phase of the algorithm involved all modules independently ex-
ecuting algorithms for reaching their final target coordinates. The algorithm
specified by the other relies only on the coordinated target locations given to
all module cells and on touch sensors for each of 6 sides for each module. It is
shown that the distributed algorithm is complete in being able to fill the tar-
get configuration while avoiding collisions, deadlock states, or movements that
would disconnect any part of the system.

The algorithm is also shown to be optimal for certain assumptions about
the model and the module capabilities. Later papers [11] also extended this
work to fitting reconfigurations surrounding obstacles. The authors emphasize
that their distributed algorithm is able to perform using only touch sensors
and without message passing between modules as almost all other solutions do.
Their solution is also deterministic, which potentially has reliability advantages
over other proposed probabilistic proposals. However, the distributed algorithm
relies heavily on the centralized initial phase and modules are required to move
in synchronous rounds. Simulated results are given to show the effectiveness of
the algorithm, but no physical implementations are known.

The Molecule robot This substrate category design by Rus et. al. consists
of modules called Molecules that each consist of two apple-sized atom units
linked by rigid bond connection [4]. Each atom can rotate 180 degrees relative
to the bond. The bond can rotate one atom 180 degrees in relation to the other
atom. This combines to give four degrees of freedom for the entire Molecule
module. An individual module would start moving by attaching one atom to
another Molecule module contained within a lattice substrate structure. The
bond of the moving Molecule module would then move the second atom through
space so that atom could come to rest upon and connect with another lattice
cell in the direction that the moving module is traveling. Once this connection
is established the first atom can now detach and be moved through space by
the bond to continue movement of the Molecule module through an alternating



sequence of detachment, turn, and reattachment.

The flexibility of the Molecule bond permits it to traverse not only level
lattice structures, but also make convex or concave transitions onto surfaces on
perpendicular axes. For movement of a given Molecule module along the exte-
rior of a lattice surface a distributed implementation of a graph search algorithm
is used to plan a path, then local control algorithms in the module execute it.
This is not complete, however, as it does not fully account for the topology of
the lattice surface nor the possibility that the environment containing the lattice
does not have enough free space for another Molecule module to traverse past.

The reconfiguration algorithms devised specifically for the Molecule module
are mostly just a combination of simple movements. The most basic involves
a pair of modules “leap-frogging”. The pair starts with one module in front of
the other. The back module then climbs over the first to become the new front
module. In this way translation is possible with just two modules, even in the
absence of a larger structure. More advanced, global reconfiguration algorithms
for the Molecule module are given in the form of generic algorithms for a physical
abstraction that the Molecule module satisfies. These generic reconfiguration
algorithms are discussed later in this paper.

5 Expanding Cube Style Robot
Reconfiguration Planning

Although they still fall in the category of substrate reconfiguration designs,
crystalline style robots are themselves a unique design. Rather than bendable
modules that can roll or walk along the exterior of a lattice structure, crystalline
modules are expandable cubes that can push or pull each other into place. For
two dimensional solutions this means four expanding and contracting faces, for
three dimensions six faces of a cube have this ability. Through this method
squares or cubes of modules can combine at uniform coordinates to form a rigid
crystal-like structure. A set range for contracting and expanding will then allow
two neighboring modules to contract to half their normal size and fill a single
grid space in the lattice. A single grid space hole is then formed for other mod-
ules to be pushed into. This concept of expanding cubes seems to have first
been created by Rus et. al. [5]. Although it is possible to apply some generic re-
configuration algorithms to both molecule and crystalline style modular robots,
these expanding cube modules provide a unique set of abilities and difficulties.

By having modular units that can expand and contract, it is now possible
for movement of modules through the interior of a robot structure rather than
only along the exterior surface. Recent algorithmic designs for reconfiguration
focus on the fact that it is a homogenous system and the final shape of a goal
configuration is important, not the exact location of specific modules. This in-



sight is available to all homogenous systems to reduce the daunting complexity
of large-scale reconfiguration problems. Since expanding cube style modules
move by being pushed or pulled rather than walking individually, this design
is particularly well-suited to take advantage. However, one drawback of this
design is that certain configurations of atomic modules are “rigid” [10]. Other
configurations can neither transform into them, nor can they transform into
others. A simple example is a straight line of cubic modules. In this case all of
the modules in the system can only push or pull in a single axis direction. Thus
it is impossible to move modules in other axis directions. Algorithmic designs
by two different research groups have found ways around this restriction.

Melt-Grow Algorithm The Melt-Grow algorithm was one of the first pro-
posed for reconfiguration of expanding-cube style modular robots. As described
above, modules are still moved through the structure by the inch-worm method
of scrunching two neighboring modules into a single grid space leaving a free
space behind. A third module can then expand to push a fourth one into the
open space. In this way modules can also be pushed one level outside of the
current surface of a structure. This begins a process of advancing the entire
surface one grid length further in that direction.

For reconfiguring to occur, out of place modules in the starting state must
be moved into vacant spaces in the desired final state. Due to the physical
limitations of modules and of the entire “crystal” structure, it is not enough to
simply select any out of place module and begin moving it. Certain modules in
certain configurations may have no immediate way of being moved, or may need
to remain in place to maintain the stability of the entire structure. Thus, mobile
modules, by criteria defined by the authors, are found to be moved and in this
manner all out-of-place modules may begin their transition towards places in
the final configuration.

In the global reconfiguration process, the melt-grow algorithm first “melts”
the starting configuration into some reachable, well-known intermediate struc-
ture. Then, from this intermediate form the final configuration may be “grown”.
The utility of an intermediate structure is twofold. First, it is commonly easier
to reconfigure from a more complicated arrangement to one that is simpler and
well-known. This facilitates making a plan for moving from the start state to
the intermediate state. By finding a similar plan from the final state to the
intermediate state we can simply reverse the steps of that plan to complete the
reconfiguration process. Secondly, the use of an intermediate state is useful in
ensuring that the algorithm does not become stuck in some undesirable state
during the reconfiguration process and have to backtrack to undo some of its
moves. Such an undesirable state would likely include an absence of useful mo-
bile modules.

One more issue addressed by the designers of this reconfiguration process is
the unreachability of certain configurations. Structures such as the single line



of modules still cannot be dealt with. However, if meta-modules each composed
of several atomic modules are used as the basic units this single axis restriction
can be avoided. The authors describe a 4x4 meta-module of 8 atomic cube mod-
ules for the two dimensional case as being sufficient for complete reconfiguration
abilities. For the three dimensional case a 4x4x4 meta-module is used. Through
this design the troublesome unreachable configurations are avoided. It is also
noted that arbitrary precision for representing structures is still possible as the
size of atomic modules is decreased.

Despite the innovative design of the expanding cube modules and the melt-
grow algorithm, there is still the drawback that it is a centralized algorithm for
reconfiguration control. The promise of robotic versatility come from systems
involving large numbers of atomic modules, and the performance of centralized
algorithms degrades as the number of modules it has to command increases. A
distributed algorithm breakthrough came with the PacMan algorithm.

The PacMan Algorithm The PacMan algorithm appears to be the first dis-
tributed reconfiguration algorithm for expanding cube style modular robots.
The same basic principles of inchworm propagation of cube modules is utilized.
An initial method - started by an outside source - is still used for giving the final
target configuration to the robot. This may be done by giving the target config-
uration to a single module, as well as that module’s coordinate location in the
starting and final configurations. The structure of the final configuration may
then be propagated throughout the modular structure. This procedure is still
reasonable as it runs in a distributed fashion. Also, until sensor and processing
technology is such that the robot can decide on its own what final shape to take,
descriptions for final configurations can only come from an outside source. After
this target configuration information dissemination step, the remainder of the
algorithm is run in a distributed fashion by the individual modules in two phases.

The first phase requires a planning step of constructing a path beginning
with out of place modules in the initial configuration and going to the locations
where they are needed in the final configuration. This comes in the form of tar-
get atoms and spare atoms. Target atoms are those in the initial configuration
that lie next to unfilled locations in the final configuration. Spare atoms are
those in the initial configuration that are no longer needed in the final configu-
ration. Modules can recognize if they are one of these two types when they are
given the plan for the target configuration in the initial step.

Next, target atoms begin by searching for spare atoms that could fill their
neighboring gap. This is done in a depth-first manner as target atoms pass
specific “plan pellets” to their neighbors in a depth-first manner. In this way a
distributed search is begun to match up spare atoms with the places they should
occupy in the final configuration. When such a plan pellet reaches a spare atom,
it sends a signal back towards the start of the path turning the plan pellets into
“path pellets” along the way. These pellets then mark the path the spare atom



must travel to reach its place in the final configuration.

Finally, modules at the end of confirmed paths begin “eating” the pellets
as they traverse those paths. Again, specific modules do not travel the entire
distance of a path. They are merely inched one step along the path, then swap
identities with the next module. This module will then inch one more step along
the path, repeating the process. This continues until a modules completes the
last step of the path, being pushed into the proper place in the target configu-
ration.

The dissemination of the target configuration, the search for spare atoms,
and the movement of those atoms toward target locations in the final configura-
tion all require only local interaction between modules. Thus, local checks are
sufficient for avoiding collisions and maintaining stability of the overall crystal
robot structure. Rus et. al. have produced a large number of simulations show-
ing their crystal design in action as well as physically implementing working
expanding cubes. The extent of physical experimentation with those cubes and
these algorithms is not known.

Telecube modules A second research group of Yim et. al. has also worked on
designs for expanding cube style modular robots [10]. In addition to algorithms
in the style of Melt-Grow and PacMan, contributions are made in other ways.
The authors focus on design issues for three dimensional expanding cube mod-
ules and design them as Telecube modules. Similar to Rus et. al. an approach
is taken to use meta-modules composed of several atomic Telecube modules as
the basic building block. However, they are able to reduce the needed size to
8 basic modules for a 2x2x2 construction rather than the 4x4x4 construction.
This is gained by a creative use of “free blocks”.

Free blocks are simply Telecube modules that are completely contracted and
rest between partially contracted Telecube modules in the normal lattice struc-
ture. However, these added modules can be used to facilitate the reduction in
meta-module size as well as uses in affecting the weight distribution, density,
and structural strength of sections of the robot system as required. In addition,
the authors are able to show that the amount of space needed for reconfigura-
tion is bounded by the space needed by the initial configuration and the final
configuration between which the transition occurs.

A worst-case bound of O(N?) meta-module moves is also proven for optimal
reconfigurations between configurations involving N meta-modules. Yet, this
bound does ignore the possibilities of concurrent movement of meta-modules.
As robotic systems advance to large numbers of modules — which would in
turn comprise large numbers of meta-modules — the utilization of concurrent
movements would seem to become of critical importance. Like the concurrent
PacMan algorithm described for the crystal robot, Scent-based systems have
been developed for Telecube modules.

10



6 Closed-Chain Reconfiguration Planning

The past two sections have detailed implementations and algorithm designs for
the substrate or lattice category of reconfigurable robots. Modules in these
designs make discrete movements along a substrate formed by other modules,
thus simplifying movement and analysis. In contrast, closed-chain reconfigurable
robots are not restricted to lattice cell positions but are instead movable chains
and loops of modules. These are capable of turning extended lines of modules
(similar to the movement of a snake, though with far fewer degrees of freedom).
Completing connections between modules is no longer the simple task assumed
for lattice-bound modules. Matching up swinging loops and chains of modules
in fact presents an array of engineering challenges. This greatly complicates
atomic movements for the modules, but opens up new algorithmic possibilities
for reconfiguration planning.

Generic Closed-Chain Reconfiguration Planning Yim et. al. are one
of the few groups to explicitly tackle the problem of reconfiguration planning
for closed-chain modular robots [1]. They present a divide-and-conquer strategy
as a general framework for dealing with closed-chain robots. This strategy is
based on defining the uniqueness of configurations by the module connectivity
it contains, which can be represented as a “modular graph”. Here vertices cor-
respond to individual modules and edges to connections between those modules.
Once in this form the total structure may be divided into a hierarchy of sub-
graphs based on sets of commonly found substructures.

Sets of substructures are chosen such that they are topologically distinct or
non-homeomorphic, they appear often in a large number of configurations, and
reconfiguring between structures in the set are simple [1]. If proper choices for
subsets are made then many reconfiguration operations may be decomposed into
a well-known set of pre-computed (and pre-stored) sub-reconfigurations. When
considering a given robot configuration, the system is partitioned into instances
of the known substructures. Once these have been identified the system can
be regarded as a connected collection of substructures rather than individual
modules. Given these substructures their connection arrangement may then be
represented by the hierarchical structure of a tree. Though, special allowances
must still be made for breaking or ignoring remaining cycles.

Given these general decomposition techniques, the authors present two algo-
rithms for closed-chain reconfiguration. The first uses a tactic mentioned earlier
for the Melt-Grown crystalline algorithm: that of a reliable intermediate form.
Given that we are dealing with chain-style modules, the first possible intermedi-
ate stage suggested is that of a single chain. Deconstructing any complex form
into a simple chain of modules should be a relatively easy reconfiguration task.
Since decomposition moves from the goal state to the intermediate state can be
reversed, a straightforward algorithm for the entire reconfiguration process is
developed. While a simple chain is the first choice, more intelligent intermedi-

11



ate choices would depend on the tasks commonly faced or expected to be faced
by the robot.

A second algorithmic design presented by Yim et. al. is to match the initial
configuration to the goal configuration — layer by layer, step by step. In the
hierarchical decomposition characteristics of the number of levels, number of
substructures per level, type of substructures per level, size of substructures,
and connectivity arrangement of each substructure were identified. Thus it
would be possible to morph the initial configuration to match, in order, each
level of complexity of the goal configuration. Though an interesting and unique
algorithm design, the authors do not elaborate on many details of implementa-
tion. It would seem that such an algorithm is unlikely to ever be as simple as
the intermediate stage algorithm, yet might be a more efficient choice for some
cases.

7 Reconfigurable Robot Locomotion Planning

For Self-Reconfigurable Robots, the task of locomotion through an environment
may be seen as a subset of the general reconfiguration problem. Specifying
certain target configurations in relation to the current state of the system may
cause the robotic system to shift in desired directions. Repeating a series of
such reconfigurations would then generate movement through the environment.
While this is a correct and complete description for locomotion, treating it as a
subset of reconfiguration planning ignores the obvious differences between the
goals of the two problems. General reconfiguration is interested in only the
starting and ending configurations of the system. Abstracting or even ignoring
the specifics of how that is achieved can lead to simplified and more efficient
algorithms. As long as the system is guaranteed to reach the final configuration
without collisions between modules or with its environment, there is little con-
cern for the intermediate configurations that the modules form.

Conversely successful locomotion planning focuses on the intermediate con-
figurations used nearly as much as the final configuration itself. Good choices
for intermediate configurations are at least responsible for maintaining traction
in the robot’s environment. In some designs, locomotion is entirely generated
by a continuous series of small configuration changes rather than achieving a
set of goal configurations. A key reason for this is that in most cases reconfigu-
ration planning is merely concerned with the configuration of attachments and
geometric shape formed by the system. Little if any regard is given for the exact
location of the system of its environment. Of the designs described above, only
the hexagonal metamorphic robots specified a coordinate system for locations
much farther than the exterior surface of the current system [3]. Still, as with
reconfiguration planning, locomotion planning is still largely dependent upon
the type of the physical implementation for modules in the system.

12



Locomotion with Expanding Cube Modules The Crystal and Telecube
modules [5,6] provided some of the most interesting and possibly most advanced
distributed algorithms for reconfiguration planning. In contrast, the options for
locomotion planning are much more limited. As currently implemented, expand-
ing cube modules are useful only for extending or contracting in coordinate axis
directions. There is not the same bending or rotating aspect as found with
most other reconfigurable robot designs. Thus, locomotion planning is mostly
restricted to a “water flow” style of movement. In this type of algorithm mod-
ules at the back of the configuration would flow over or possibly move virtually
“through” the initial configuration to result in a module being placed one lattice
unit further towards the desired direction. Another visualization of this tech-
nique might be as a train-like object that continually lays its own tracks ahead
of it. Finally, in addition to the expanding cube modules the hexagonal meta-
morphic designs [3] would also seem to be restricted to this type of locomotion
planning.

Still, this is not to say the method is without future promise. The conditions
that require the water-flow technique are easily abstracted to create a general
framework which has been referred to as the sliding cube model. In this model
cubes are used to represent modules. It is assumed that modules have the abil-
ity to slide along the exterior of lattice surfaces formed by other modules, and
be able to make concave and convex transitions to other axes of attached lattice
surfaces. This allows for the designing of generic algorithms suitable for sub-
strate style reconfigurable modules and beyond.

A major approach taken by Rus et. al. towards finding such generic algo-
rithms is to apply the basic cellular automata paradigm to robotic systems. This
work deals with the an abstract level of self-reconfiguration modules so as to
produce algorithms that are architecture independent. This abstraction allows
correctness of algorithms to be proven more easily as well as giving multiple im-
plementation choices for comparing algorithms, as well as comparing different
physical module architectures. More specifically, a cellular automata describe
basic rule sets for each module in the self-reconfiguration system to implement.
By having each module implement a rule set based solely on its local config-
uration, an efficient distributed algorithm is created. Locomotion over uneven
terrain has been the initial focus of these algorithms. The cellular automata
approach is well-suited to noting the terrain and acting in accordance to gener-
ate water-flow locomotion. Also, since locomotion places less restrictions on the
exact shapes and configurations taken by the system as it moves, this problem
is more natural to start with than the more restrictive general reconfiguration
problem.

Locomotion with the Molecule module Since it fits in the substrate mod-
ule category, the Molecule module is also capable of implementing the generic
“sliding cube” algorithms as described above. These work for global reconfigura-
tion algorithms as well as for locomotion algorithms. In addition, the bendable

13



bond and rotating attachment degrees of freedom permit other kinds of loco-
motion for the Module module and other similar substrate style designs. Rus
et. al. have been able to show that locomotion is possible with only 2 Molecule
modules in an uneven rolling gait. For stair-climbing, a minimum of 8 conjoined
Molecules were required. These constructs largely relied on just a few modules
continually leapfrogging ahead of each other.

For more global approach to reconfiguration and locomotion planning, an
idea of scaffold planning is introduced. This idea is implemented for the Molecule
module, but seems to have been first designed for hexagonal metamorphic robots
by Yim et. al. Instead of completely filling the interior of a module lattice
structure, this design instead leaves some of the space unfilled to create tun-
nels through the interior of the structure. This permits more surface area for
modules to move across and allows the surface area to be scaled with the size
and volume of the system as it grows. Again, this idea of interior tunnels may
work for any of the substrate type of modules, but it particularly useful for
hexagonal and Molecule modules that can only traverse along the surface of a
lattice structure.

Locomotion with Closed-Chain Modules The PolyBot system is a het-
erogenous closed-chain style modular robot. Here a node module supplies power
to actuated segment modules that permit movement. This permits chains and
loops of modules to be moved about as described earlier in section 2. Because
attachment of modules to new locations is no longer a trivial operation of mov-
ing with respect to a touching neighbor module, photo-diodes and light-emitting
diodes are used to determine the position and orientation of modules.

To go along with their design, an impressive array of locomotion gaits are
described. Control for these operations comes from precomputed gait tables,
although a demonstration of dynamic downloading of such tables was given.
Locomotion gaits ranged from a rolling loop, to a snake-like chain with sinusoidal
movement, to a multi-legged spider or centipede construction. For real-world
implementations and locomotion, at this time these close-chain designs seem to
be the farthest along. Still, it is uncertain if they hold the same abilities to
scale well to very large numbers of nodes to reach the full versatility potential
of reconfigurable robots.

8 Additional Self-Reconfiguration Robot
Challenges

The most basic challenge for self-reconfigurable robots is the designing of phys-
ical modules with the strength, versatility, and cost-effectiveness to implement

large scale systems. Along with that, the basic algorithms for path planning,
self-reconfiguration planning, and locomotion planning are all important motion

14



planning algorithms subsets that need intelligent solutions to control those sys-
tems. The unique nature of self-reconfiguration planning and motion planning
for these modular systems, as well as the need for distributed management of
very large systems of modules, makes for a particularly challenging combina-
tion. In addition, once these systems have the ability to effectively move and
reconfigure, there is still the question of how those abilities should be utilized.
Some techniques from the field of Artificial Intelligence have been proposed.

One possible question is what constitutes and optimal or near-optimal con-
figuration for acting out a specific task. In [14] a proposal is given for finding
“optimal” module assembly configurations given certain joint and link modules.
Genetic algorithms were used for finding such assemblies. Another more spe-
cific task involves multiple robots coordinating together for tasks such as box
pushing. In [15] a reinforcement learning strategy focuses on task allocation for
this problem.

For self-reconfigurable robots, the question of being able to divide up and
recombine systems of modules is only starting to be addressed. While a sin-
gle system of modules provides a great degree of versatility, those abilities are
amplified when the modules are able to divide into smaller sub-systems. In the
commonly given potential uses such as search-and-rescue or exploration in un-
known environments, the ability to subdivide (and later recombine) is of great
use. Rus et. al. are one group that addresses this question in [16].

9 Conclusion

The growing field of self-reconfigurable robots is one with bright future promise
as well as a unique set of difficult challenges. To achieve the potential of such
systems, very large numbers of independent modules must be coordinated to-
gether. For the physical implementation, this presents problems with material
design for strength, actuator motors for movement power, and connection de-
signs that can operate in the vast array of unforeseen environments in which
self-reconfigurable robots would be most useful. Reliable functionality for com-
munication between modules and processors for computation are also needed.
On top of those challenges, solutions must be cost-effective so that it is possible
to build the multitudes of modules that are necessary to compose truly versatile
system. In addition, many uses for these robots will require that the modules
be very small so that the entire system can fit through small spaces or perform
fine precision operations.

While the physical implementation challenges are numerous, those for de-
signing the control algorithms are possibly more daunting. These modular sys-
tems seem to require distributed algorithmic solutions that are among the most
difficult of settings. The number of involved individual units needs to be large
to allow the system to be a useful as possible, yet processor and communi-

15



cation abilities will likely be very limited by the nature and size of the mod-
ules. Work that began with global, centralized algorithms has given way to
hardware-specific distributed solutions, and recently the development of archi-
tecture independent frameworks for abstracting the design of algorithms away
from individual physical implementations. This evolution seems to lead toward
a more structured science for the field and more rigorous methods for designing
and evaluating new algorithms.

The research progress covered in this survey attempted to capture a snapshot
of the major designs and trends in the self-reconfigurable robotic field. Although
the field is still not large, various research designs were not included here. In
most cases, it is because that research focused mainly on a physical hardware
solution. This survey put the focus on the state of motion planning algorithms
for these robots, while still providing enough of the hardware background so
that the setting and motivation for these algorithms might be understood. A
look at several hardware designs for reconfigurable robots is given in [18] and
particularly in [17].

References

[1] A. Casal and M. Yim, Self-Reconfiguration Planning for a Class of Modular
Robots. In Proc. of the Society of Photo-Optical Instrumentation Engineers,
Conf. on Sensor Fusion and Decentralized Control in Robotic Systems II,
1999.

[2] M. Yim, J. Lamping, E. Mao, J.G. Chase, Rombic Dodecahedron Shape for
Self-Assembling Robots. Xerox PARC, SPL TechReport P9710777, 1997.

[3] J. Walter, B. Tsai, N. Amato. Choosing good paths for fast distributed
reconfiguration of hexagonal metamorphic robots. Proc. of the IEEE Intl.
Conf. on Robotics and Automation, pages 102-109, May 2002.

[4] K. Kotay, D. Rus, M. Vona, C. McGray, The self-reconfiguring robotic
Molecule: design and control algorithms. Proc. of the Workshop on the
Algorithmic Foundations of Robotics, Houston, USA.

[5] D. Rus, M. Vona, Crystalline Robots: Self-reconfiguration with Unit-
compressible Modules. Autonomus Robots, vol. 10, no. 1, pages 107-124,
2001.

[6] S. Vassilvitskii, J. Suh, M. Yim, A Complete, Local and Parallel Reconfig-
uration Algorithm for Cube Style Modular Robots. Proc. of the IEEFE Int.
Conf. on Robotics and Automation, 2002.

[7] M. Yim, C. Eldershaw, Y. Zhang, D. Duff, Limbless Conforming Gaits with
Modular Robots. 9th Intl. Symposium on Ezxperimental Robotics, June 18-
21, 2004.

16



8]

G. Chirikjian, A. Pamecha. Bounds for self-reconfiguration of metamorphic
robots. In Proc. of IEEE Intl. Conf. on Robotics and Automation, pages
1452-1457, 1996.

J. Walter, E. Tsai, N. Amato, Algorithms for Fast Concurrent Reconfigu-
ration of Hexagonal Metamorphic Robots, IEEE Transactions on Robotics,
Vol. 21, No. 4, pages 621-631, August 2005.

S. Vassilvitskii, J. Kubica, E. Rieffel, J. Suh, and M. Yim, “On the General
Reconfiguration Problem for Expanding Cube Style Modular Robots,” In
Proc. of IEEE Intl. Conf. on Robotics and Automation, 20002.

J. Walter, B. Tsai, N. Amato, Enveloping Obstacles with Hexagonal Meta-
morphic Robots. Proc. of IEEE Intl. Conf. on Robotics and Automation,
May 2003, pages 741-748, Taipei, Taiwan.

G. Chirikjian, Kinematics of a metamorphic robotic system. Proc. of IEEE
Intl. Conf. on Robotics and Automation, pages 449-455, 1994.

T. Fukuda and S. Nakagawa, Dynamically Reconfigurable Robotic Systems.
Proc. of IEEE Intl. Conf. on Robotics and Automation, 1988.

I. Chen and J. Burdick. Determining task optimal modular robot assembly
configurations. Proc. of IEEFE Intl. Conf. on Robotics and Automation,
pages 132-7, 1995.

L. Parker. Heterogeneous Multi-Robot Cooperation. PhD thesis, MIT,
1994. EECS Department.

Z. Butler, S. Murata, and D. Rus. Distributed replication algorithms for
self-reconfiguring modular robots. Distributed Autonomous Robotic Sys-
tems 5, Springer-Verlag, 2002.

K. Kotay. Self-Reconfiguring Robots: Designs, Algorithms, and Applica-
tions. PhD thesis, Dartmouth College, 2003. CS Department.

P. Jantapremjit and D. Austin. Design of a Modular Self-Reconfigurable
Robot. Australian Conf. on Robotics and Automation, Sydney, Australia,
2001.

17



