
CPS234 Computational Geometry August 30, 2005

Lecture 1: Introduction to Computational Geometry
Lecturer: Pankaj K. Agarwal Scribe: Amit K. Patel

1.1 Course Overview

Professor:
Pankaj K. Agarwal
LSRC, Room D315
(919) 660-6548
pankaj@cs.duke.edu

Teaching Assistant:
Amit K Patel
LSRC, Room D103
(919) 660-6501
akpatel@cs.duke.edu

Welcome to CPS 234, Computational Geometry! Computational geometry studies the design, analysis, and
implementation of algorithms and data structures for geometric problems. These problems arise in a wide
range of areas, including CAD/CAM, robotics, computer graphics, molecular biology, GIS, spatial databases,
sensor networks, and machine learning. In addition to the tools developed in computer science, the study of
geometric algorithms also requires ideas from various mathematical disciplines, e.g., combinatorics, topol-
ogy, algebra, and differential geometry. This close interaction between various mathematical and practical
areas has had a beneficial impact on both basic and applied research in computational geometry.

1.1.1 Course content and syllabus

The goal of this course is to provide an overview of the techniques developed in computational geometry as
well as some of its application areas. The topics covered in the course will include:

1. Geometric Fundamentals: Models of computation, lower bound techniques, geometric primitives, ge-
ometric transforms

2. Convex hulls: Planar convex hulls, higher dimensional convex hulls, randomized, output-sensitive, and
dynamic algorithms, applications of convex hull

3. Intersection detection: segment intersection, line sweep, map overlay, halfspace intersection, polyhedra
intersection

4. Geometric searching: segment, interval, and priority-search trees, point location, persistent data struc-
ture, fractional cascading, range searching, nearest-neighbor searching

5. Proximity problems: closest pair, Voronoi diagram, Delaunay triangulation and their subgraphs, span-
ners, well separated pair decomposition

1-1



Lecture 1: August 30, 2005 1-2

6. Arrangements: Arrangements of lines and hyperplanes, sweep-line and incremental algorithms, lower
envelopes, levels, and zones, applications of arrangements

7. Triangulations: monotone and simple polygon triangulations, point-set triangulations, optimization
criteria, Steiner triangulation, Delaunay refinement

8. Geometric sampling: random sampling and ε-nets, ε-approximation and discrepancy, cuttings, coresets

9. Geometric optimization: linear programming, LP-type problems, parametric searching, approximation
techniques

10. Robust geometric computation: perturbation techniques, floating-point filters, rounding techniques

A tentative lecture plan is provided in Table 1.1. The most current and definitive syllabus will be maintained
on the course web page http://www.cs.duke.edu/education/courses/fall05/cps234/) under the heading “Lec-
tures” so students should consult the course web page for the most recent information. In addition to the
lecture plan, the course web page will keep track of when assignments are issued and due, as well as who is
in charge of lecture scribing a given lecture.

Prerequisites Students are expected to have previous exposure to basic algorithmic techniques and data
structures. References to necessary background will be provided but otherwise, the course is self-contained.

1.1.2 Administrative details

Course web page and mailing list The course webpage will be maintained at
http://www.cs.duke.edu/education/courses/fall05/cps234/). It will contain all the relevant material for the
course, including lecture notes, assignments, handouts, and further reading material. There will also be a
mailing list for the course called “cps234”, which the instructor and TA will use to make announcements.
Please make sure that your name is on the list.

Meeting times Class meets every Tuesday and Thursday afternoon from 2:50–4:05, except for October 11
(Fall Break) and November 24 (Thanksgiving). Any changes will be announced later in the class. The last
day of lecture will be November 29. Students will present their final project reports during reading period.

Course materials There will be no mandatory textbook for the course. The recommended textbook is
Computational Geometry: Algorithms and Applications but no single textbook seems ideal at this juncture.
That being said, there are a number of valuable texts that serve different purposes. Every student is encour-
aged to purchase the text that they would find most useful. Here is a list of a few books containing material
covered in class.

• M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, 2nd edition, 2000. (course textbook)

• H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge Univ. Press, England,
2001.

http://www.cs.duke.edu/education/courses/fall05/cps234/
http://www.cs.duke.edu/education/courses/fall05/cps234/


Lecture 1: August 30, 2005 1-3

Lecture Date Topic
Geometric Fundamentals

1 08/29 Models of computation, geometric primitives, lower bounds
Convex Hull

2 09/01 2D convex hull
3 09/06 Convex hull in high dimensions
4 09/08 Randomized incremental construction (RIC) for convex hull

Intersection Detection
5 09/13 Segment intersection: sweep-line algorithm, RIC
6 09/15 RIC analysis, polyhedra intersection

Geometric Data Structures
7 09/20 Segment, interval, priority-search trees, quad trees
8 09/22 Orthogonal range searching
9 09/27 Planar point location

Proximity Problems
10 09/29 Voronoi diagrams (VD), Delaunay triangulation (DT)
11 10/04 RIC for DT, subgraphs of DT
12 10/06 Spanners, well seperated pair decomposition

Arrangements
13 10/13 Arrangements of lines and curves, lower envelope, zone theorem
14 10/18 Levels and incidences in arrangements
15 10/20 Arrangements of hyperplanes

Triangulation
16 10/25 Polygon triangulation
17 10/27 Point-set triangulation, Delaunay refinement

Geometric Sampling
18 11/01 Random samplings, ε-nets and ε-approximations
19 11/03 Cuttings and their applications
20 11/08 Simplex range searching
21 11/10 Coresets

Geometric Optimization
22 11/15 Linear Programming
23 11/17 LP-type problems
24 11/22 Parametric searching

Robustness Issues
25 11/29 Perturbation methods, rounding, filters

Table 1.1: Tentative lecture plan



Lecture 1: August 30, 2005 1-4

• J. E. Goodman and J. O’Rourke (eds.), Handbook of Discrete and Computational Geometry, 2nd edi-
tion, CRC Press LLC, Boca Raton, FL, 2004.

• K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms, Prentice
Hall, Englewood Cliffs, NJ, 1994.

• J. O’Rourke, Computational Geometry in C, 2nd edition, Cambridge University Press, New York,
1998.

• J.-R. Sack and J. Urrutia (eds.), Handbook of Computational Geometry. Amsterdam, Netherlands:
North-Holland, 2000.

In addition, a number of web sites, papers, and other reading resources will be provided during the semester.
These will appear on the course webpage; all course materials will be available through the course web site
http://www.cs.duke.edu/education/courses/fall05/cps234/ under the heading “Reading;” other web links may
be also be collected under the heading “Links”.

Finally, lecture notes for every lecture will be made available on the course webpage, under the heading
“Lectures” within ten days of the given lecture.

Scribing lecture notes Because there is no one textbook covering all class material, course lecture notes
will be a very important resource for everyone. For this reason, they should be produced in a detailed and
comprehensive manner.

Each student taking the course will act as a scribe for at least two lectures. The scribe for a given lecture
will be responsible for taking detailed notes during the lecture, typing up those notes in LATEX, and sub-
mitting the notes one week after the lecture (or sooner). Notes should be written lucidly and be extremely
comprehensive—they will serve as an authoritative summary and reference of class material for use by current
and future students (as well as the instructor and TA).

The scribing template file scribing.template.tex can be downloaded from the course webpage under
the heading “Links.” The scribing.cls file must also be available in order for the template file to compile
properly in LATEX. Both files can be found at the course web page. If you click on the scribing.cls file
link and are not prompted to download the file, but the contents are instead shown in your browser, you can
simply copy and paste them into a text editor and save the file as scribing.cls .

With these files in place, you can begin typing up your notes in LATEX with your favorite text editor by adding
your notes to scribing.template.tex in the appropriate section. You are encouraged to use Xfig to
draw pictures. See the TA for help on using LATEX or Xfig.

1.1.3 Submitting scribed lecture notes

Please rename your .tex file to lectureNN.tex , where NN is the lecture number (please use two digits: use
lecture03.tex for Lecture 3, for example). Importantly, your .tex file must compile before you submit
it! To ensure this, try compiling your .tex file with the following commands:

latex lectureNN.tex

http://www.cs.duke.edu/education/courses/fall05/cps234/


Lecture 1: August 30, 2005 1-5

latex lectureNN.tex
dvips -o lectureNN.ps lectureNN.dvi

or alternatively,

pdflatex lectureNN.tex
pdflatex lectureNN.tex

Running latex/pdflatex twice is necessary, not a typo. If all this works and your postscript (.ps) or PDF (.pdf)
file looks good when you view it, then submit the .tex and .ps or .pdf files, along with any necessary image
files in both .jpg and .eps formats, as discussed in scribing.template.tex . Completed scribed lecture
notes must be submitted to the TA within one week after the lecture (or sooner). The instructor and TA will
go through them and will ask you to revise the notes if necessary. The revised version will be due within
two-three days. Since students will rely on these notes for the course material, it is essential that the notes be
submitted on time.

1.1.4 Getting help with LATEX

How many of you are familiar with LATEX?

If you are not familiar with LATEX, the document entitled The Not So Short Introduction to LATEX 2ε should be
a wonderful start. Despite its name, it is very compact, but remains fairly comprehensive. It is available on
Blackboard. There are other books and web sites available if you need further assistance. Email the instructor
or the TA and we can provide more information.

All of this information on LATEX and instructions for submitting scribed lecture notes is available at the course
web site under the heading “Links.”

1.1.5 Grading

The final grade will be based on your performance in home work problems, research project, and scribing
lectures.

Problem sets: 30% of grade There will be three to four problem sets that each student has to complete
individually. You will have roughly two weeks for each problem set.

No collaboration is permitted on problem sets. However, if you have worked for a while on a particular
problem and have encountered a mental wall, and if you have banged your head against it for a while, it is
permissible to consult others to make progress—that is better than stopping. But it should remain understood
that this interaction must be one of consultation and not collaboration: hints rather than answers. After
consultation, it is expected that you should still have some thinking to do. If you do not understand the
material on which the assignments are based, contact the TA or me. In addition, if you do consult with
another student, you must cite this in your solution.



Lecture 1: August 30, 2005 1-6

Research project: 40% of grade There will be one research project to be completed individually. The
intention is for the project work to be of publishable or nearly publishable quality—you might as well get
something substantive out of the experience. Each student is encouraged to develop their own projects, but
a number of topics will be discussed in the class. You should start thinking about the project as soon as
possible.

The project will consist of two parts. The first part, which will be due immediately after the fall break, will
require each student to submit a proposal, literature survey, and initial work to support the proposed research.
The final deliverables, due in the first week of December, will be:

• A well-written paper for submission to the instructor (the primary measure of assessment will be the
quality of the methods, analysis, and results in the paper; however, the paper should also be well-written
and express your results lucidly).

• A short presentation to the class highlighting the major contributions of the paper (the primary measure
of assessment will be the clarity with which you present your ideas and your ability to effectively
communicate your results to your peers).

Lecture scribing: 30% of grade All students are required to serve at least twice as a lecture scribe. Your
scribed lecture notes will be given a score of 0-20, based on the degree of comprehensiveness and care with
which they were produced. Students may need to consult additional resources and create text or figures to
supplement the lecture content itself in order to produce a comprehensive set of notes that merit full credit. In
other words, the scribed notes should be more than was covered in class in order to receive full credit. There
will be opportunities later in the semester for students to scribe a third time if they wish to earn additional
points in this category.

Scribed lecture notes should be completed individually, but you can certainly ask your peers to clarify any
point that your notes leave unclear: it is better to have a more complete and correct set of notes than to muddle
something. In addition, you are of course welcome to seek LATEX typesetting assistance from any source if
you need it.

1.2 Problem Primitives and Computational Models

Geometry is a broad area requiring many lifetimes to study in full. We concentrate on the foundations of
computational aspects of geometry a field that emerged in the late 1970’s. We are concerned about devel-
oping and analyzing geometric algorithms. These are algorithms answering decision problems or computing
geometric structures given as input a set of geometric objects. In this class, we concentrate on two broad
categories of problems – one-shot algorithms and query algorithms.

One-shot algorithms look like the following.

Input: a set S of geometric objects
Output: some geometric/topological/combinatorial structure or the answer to a decision problem

There are several ways of measuring the performance of an algorithm. The two such measures are running
time and space. For one-shot problems, we will mostly be concerned with worst-case time performance but
occasionally, expected running time as well.



Lecture 1: August 30, 2005 1-7

Sometimes, by allowing the use of more space, the running time of certain problems is reduced. This is seen
in query problems. Query problems look like the following.

Input: a set S of geometric objects and a query q

Output: answer to the query q

Given S we do a series of similar queries. The goal is to answer each query as fast as possible. Redoing
work done for previous queries is therefore undesirable. To remedy this, S may be preprocessed to make
each query fast. Time and, to a lesser extent, space required to reprocess is secondary to query time. Often
times, the query time is measured with respect to space required by the preprocessing step.

Computational models How does one measure running time? The most common way is to measure CPU
time. However, one can imagine an algorithm requiring more time doing memory operations or I/O operations
than arithmetic operations. For these cases, counting memory operations or I/O operations is a better measure
of performace than counting CPU cycles.

The asymptotic running time of an algorithm depends on the machine used. In order to compare the efficiency
of two different algorithm, we are forced to define a standard model of a computer or a computational model.
Here is a list of some computational models you may have seen.

• Turing machine

• RAM

• Decision tree

• Quatum Turing machine

• Pointer machine model

RAM is the most common model for measuring running time. In a RAM model, each read and write operation
to storage takes constant time. Each arithmetic operations also takes constant time. The pointer machine
model is motivated by graph algorithms. The “memory” in this model is a linked list of nodes where each
node is capable of doing certain basic operations.

When looking at running times, it is important to consider both the upper bound and lower bound. If your
algorithm has an O(n2) running time, can you do better? For algorithms that output a geometric structure,
the complexity of this structure immediately implies a lower bound.

Partial sums Given an array S = {a1, . . . , an} of n real numbers, compute Q(l, r) =
∑r

i=l ai. Without
any preprocessing, each query requires O(n) addition operations.

Can we preprocess so each query takes only constant time? Construct an array Ŝ = {σ1, . . . , σn} such that
σi =

∑i

j=1
aj . For a query Q(l, r), return σr − σl. Each query requires O(1) operations – two reads and

one subtraction. The preprocessing can be done with O(n) additions.

What if we are not allowed to use the subtraction operation. How fast can we do a query? We may create an
n × n array Ŝ such that Ŝij =

∑j

k=i ak. Queries take O(1) time but the prepocessing takes O(n2) time and
space.



Lecture 1: August 30, 2005 1-8

< 0 = 0 > 0

pi

Figure 1.1: An algebraic decision tree: Node i evaluates a polynomial pi(a1, . . . , an) of bounded degree.
The result of pi determines the branching of each computation.

How fast can we do a query if we restrict ourselves to O(n) space? We can do queries in O(lg n) time. The
idea is the following. Construct a binary tree T with a1, . . . , an as its leaves. In each internal node, store the
sum of the leaves of both its substrees. Andrew Yao [Yao82] shows an O(α(n)) parital sum query algorithm
when the values are from a semigroup (substraction not allowed). Seven years later Chazelle and Rosenberg
[CR89] prove the matching lower bound.

Lower bounds and algebraic decision tree models Many times we may choose a particular set of oper-
ations ignoring others and count the required number of those operations to solve a problem. This gives a
lower bound on the problem.

Consider a decision tree T computing a decision problem on input S = {a1, . . . , an}. Node i in the tree
computes pi(a1, . . . , an). The computation takes one of three branches depending on whether pi is 0, less
than 0, or greater than 0. See Figure 1.1. If pi(a1, . . . , an) is a polynomial of constant degree, then T is
called an algebraic decision tree. The comparison tree used to show the lower bound on comparison sorting
is a linear decision tree.

For a decision problem f(a1, . . . , an) with ai ∈ R, the language accepted by f is

W = {(a1, . . . , an) | f(a1, . . . , an) = 1}.

Let #w be the number of connected components in W and βi the ith Betti number of W .

Theorem 1 (Ben’Or [BO83]) Let f be a decision problem. The worst-case running time to compute f under
the algebraic decision tree model is Ω(lgd #w − n).

Theorem 2 (Yao [Yao94]) Let f be a decision problem. The algebraic decision tree computing f takes time
greater than Ω(log βi − n) for each i.

References
[BO83] Michael Ben-Or. Lower bounds for algebraic computation trees. In STOC ’83: Proceedings of

the fifteenth annual ACM symposium on Theory of computing, pages 80–86, New York, NY, USA,



Lecture 1: August 30, 2005 1-9

1983. ACM Press.

[CR89] B. Chazelle and B. Rosenberg. Computing partial sums in multidimensional arrays. In SCG ’89:
Proceedings of the fifth annual symposium on Computational geometry, pages 131–139, New York,
NY, USA, 1989. ACM Press.

[Yao82] Andrew C. Yao. Space-time tradeoff for answering range queries (extended abstract). In STOC ’82:
Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages 128–136,
New York, NY, USA, 1982. ACM Press.

[Yao94] Andrew C. Yao. Decision tree complexity and betti numbers. In STOC ’94: Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing, pages 615–624, New York, NY,
USA, 1994. ACM Press.


	Course Overview
	Course content and syllabus
	Administrative details
	Submitting scribed lecture notes
	Getting help with LaTeX
	Grading

	Problem Primitives and Computational Models

